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ABSTRACT

The two leading modes of North Pacific sea surface temperature (SST) and sea level pressure (SLP), as well

as their connections to tropical variability, are explored in the 24 coupled climate models used in the In-

tergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) to evaluate North

Pacific decadal variability (NPDV) in the past [twentieth century; climate of the twentieth century (20C3M)

scenario] and future [twenty-first century; Special Report on Emissions Scenarios (SRES) A1B scenario]

climate. Results indicate that the two dominant modes of North Pacific oceanic variability, the Pacific decadal

oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), do not exhibit significant changes in their

spatial and temporal characteristics under greenhouse warming. However, the ability of the models to capture

the dynamics associated with the leading North Pacific oceanic modes, including their link to the corre-

sponding atmospheric forcing patterns and to tropical variability, is questionable.

The temporal and spatial statistics of the North Pacific Ocean modes exhibit significant discrepancies from

observations in their twentieth-century climate, most visibly for the second mode, which has significantly

more low-frequency power and higher variance than in observations. The dynamical coupling between the

North Pacific Ocean and atmosphere modes evident in the observations is very strong in the models for the

first atmosphere–ocean coupled mode, which represents covariability of the PDO pattern with the Aleutian

low (AL). However, the link for the second atmosphere–ocean coupled mode, describing covariability of an

NPGO-like SST pattern with the North Pacific Oscillation (NPO), is not as clearly reproduced, with some

models showing no relationship between the two.

Exploring the tropical Pacific–North Pacific teleconnections reveals more issues with the models. In con-

trast with observations, the atmospheric teleconnection excited by the El Niño–Southern Oscillation in the

models does not project strongly on the AL–PDO coupled mode because of the displacement of the center of

action of the AL in most models. Moreover, most models fail to show the observational connection between

El Niño Modoki–central Pacific warming and NPO variability in the North Pacific. In fact, the atmospheric

teleconnections associated with El Niño Modoki in some models have a significant projection on, and excite

the AL–PDO coupled mode instead. Because of the known links between tropical Pacific variability and

NPDV, these analyses demonstrate that focus on the North Pacific variability of climate models in isolation

from tropical dynamics is likely to lead to an incomplete view, and inadequate prediction, of NPDV.

1. Introduction

North Pacific decadal variability (NPDV) is a key

component in predictability studies of both regional and

global climate change. Namias (1969) identified ‘‘cli-

matic regimes’’ linked to changes in North Pacific sea

surface temperature (SST) induced by shifts in atmo-

spheric sea level pressure (SLP) patterns in both the
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winter and summer. Subsequent studies by Namias

(1972) and Davis (1976) explored the predictability as-

pect of these large-scale patterns of variability in the

North Pacific in both the atmosphere and the ocean, the

latter of which retains more memory and can thus sus-

tain multidecadal variability. Though studies of NPDV

remained dormant through the 1980s, the emergence of

the El Niño–Southern Oscillation (ENSO) phenome-

non in the climate literature in the 1990s reinvigorated

interest in the subject (e.g., Trenberth 1990; Graham

et al. 1994; Trenberth and Hurrell 1994; Zhang et al.

1997). The discovery of links between NPDV and

changes in marine ecosystems (Mantua et al. 1997;

Mantua and Hare 2000), along with its connections to

tropical Pacific climate variability (e.g., Alexander et al.

2002; Anderson 2003; Newman et al. 2003; Deser et al.

2004; Newman 2007; Alexander et al. 2008; Di Lorenzo

et al. 2008), emphasizes the need to better understand

and characterize NPDV for global climate change pre-

dictions.

Two patterns of climate variability in the North Pacific

generally characterize NPDV: the Pacific decadal os-

cillation (PDO; Mantua et al. 1997) and the recently

identified North Pacific Gyre Oscillation (NPGO; Di

Lorenzo et al. 2008). The PDO is defined as the leading

empirical orthogonal function (EOF) of North Pacific

SST anomalies (SSTa), and its positive phase is charac-

terized by negative SSTa in the central North Pacific

encircled by positive SSTa along the North American

coastline. The PDO is linked to atmospheric variability

in the Aleutian low (AL) and downstream changes in

North American wintertime weather (e.g., Latif and

Barnett 1996). Studies also link changes in the PDO to

changes in marine ecosystems (e.g., Mantua et al. 1997;

Yasuda et al. 1999; McGowan et al. 2003).

The second pattern of North Pacific climate variabil-

ity, the NPGO, is formally defined as the second leading

mode of northeast Pacific sea surface height (SSH)

anomalies (Di Lorenzo et al. 2008). This pattern physi-

cally represents changes in the strength of the sub-

tropical and subpolar gyres in the North Pacific and

tracks prominent decadal fluctuations in salinity and

nutrients observed in the central and eastern North

Pacific (Di Lorenzo et al. 2009). Chhak et al. (2009) il-

lustrated that the atmospheric forcing pattern of the

NPGO is associated with the North Pacific Oscillation

(NPO; e.g., Walker and Bliss 1932; Rogers 1981; Linkin

and Nigam 2008), the second leading pattern of North

Pacific SLP anomalies (SLPa). Ceballos et al. (2009) also

linked the NPGO to changes in strength of the Kur-

oshio–Oyashio Extension current, therefore showing

that NPGO variability latitudinally spans the North

Pacific. The SSTa pattern associated with the NPGO is

closely related to the second leading mode of North

Pacific SSTa, referred to as the ‘‘Victoria mode’’ (Bond

et al. 2003), and the second leading mode of Pacific-

wide SSTa (Di Lorenzo et al. 2008). Recent evidence

also suggests that the NPGO is a decadal-scale inte-

grated response to low-frequency extratropical atmo-

spheric forcing initiated by ‘‘El Niño Modoki’’ (Ashok

et al. 2007) or central Pacific warming (CPW) (Di Lorenzo

et al. 2010).

Given the links between the PDO and the NPGO and

global climate, the predictability and characterization of

these two modes in coupled climate models is an im-

portant open question in climate dynamics. Thus far,

studies concerning long-term predictability of Pacific

climate have focused on changes in the amplitude and

frequency of ENSO and subsequent effects on tele-

connection patterns (e.g., Meehl et al. 2006; Merryfield

2006; Yeh and Kirtman 2007). Overland and Wang

(2007), by contrast, examined changes in the PDO under

future warming scenarios in 10 coupled models used in

the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4). This study

found that the ensemble mean of the 10 models pre-

dicted uniform warming of the entire North Pacific basin

with no change in the mean spatial pattern of the PDO.

Newman (2007) explored interannual-to-decadal pre-

dictability of tropical and North Pacific SSTs in the

IPCC models and concluded that North Pacific–tropical

Pacific connections in the IPCC models were poorly

represented, thus affecting predictability of decadal-

scale variability with the models. Considering these

previous studies, there still remains questions on po-

tential changes in the frequency of the leading modes of

North Pacific variability and the degree to which these

modes of variability are tied to atmospheric forcing

patterns, both directly and remotely.

This study addresses some of these outstanding issues

through analysis of output from the 24 coupled climate

models used in the IPCC AR4. The goals of the study

are as follows: 1) to quantify the statistics of the leading

patterns of NPDV climate variability, both in hindcast

(twentieth century) simulations and future (twenty-first

century) projections; 2) to evaluate the relationship

between atmospheric forcing and the oceanic modes

of NPDV; and 3) to assess the degree to which known

atmospheric–oceanic teleconnections between the tropi-

cal Pacific and the North Pacific are represented in the

models. Data and techniques used are first presented

in section 2. Section 3 parallels Overland and Wang

(2007) in looking at the leading EOFs of North Pacific

SSTa as well as the power spectra associated with these

leading patterns. Then, section 4 explores the use of

a simple autoregressive model of order-1 (AR-1 model)
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to evaluate atmosphere–ocean connections in the North

Pacific. Section 5 explores how the models capture tele-

connections between the tropical Pacific and the North

Pacific associated with both the canonical ENSO and

CPWs. A synthesis of the results and implications for

future NPDV evaluation studies follow.

2. Data and methods

a. Observations

The low-frequency variability of the Pacific is in-

vestigated using observational analyses of SLP and SST.

SLP data are taken from the National Centers for En-

vironmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) Reanalysis Project

(Kistler et al. 2001), while SST data are taken from the

National Oceanic and Atmospheric Administration

(NOAA) Extended Reconstruction SST dataset, ver-

sion 3 (Smith et al. 2008). Both datasets contain

monthly-mean values from 1950–2008 and are natively

gridded onto a 2.58 3 2.58 latitude–longitude grid glob-

ally for SLP and a 28 3 28 grid for SST.

b. Model output

The source of the model outputs used in this study are

the 24 coupled climate models that are part of the

Coupled Model Intercomparison Project, phase 3 (CMIP3)

and that were used for the IPCC AR4 (Table 1). The

model output is available for downloading and pro-

cessing through FTP or Open-Source Project for a Net-

work Data Access Protocol (OPeNDAP) from the

Program for Climate Model Diagnosis and Intercom-

parison (PCMDI) at the Lawrence Livermore National

Laboratory (more information on the program is avail-

able at http://www-pcmdi.llnl.gov/). We use the climate

of the twentieth century (20C3M) scenario (i.e., green-

house gas concentrations increase throughout the

twentieth century as in observations) to represent the

twentieth-century climate and the Special Report on

Emission Scenarios (SRES) A1B scenario (i.e., atmo-

spheric carbon dioxide levels increase to 720 ppm by

2100 and are stabilized at that level thereafter) to rep-

resent the twenty-first-century climate.

Multiple realizations of the monthly-mean SLP and

SST output are extracted for each model (see Table 1).

All available realizations are used in processing the

statistics for a particular model; that is, the mean value

of statistics from all realizations of a particular model is

used as the climate signature for that model. The in-

corporation of all realizations allows us to avoid run-to-

run discrepancies in the models, as averaging will

‘‘smooth’’ the statistics. However, every model does not

have the same number of realizations, so one disad-

vantage of this method is that models with only one

realization available [e.g., the Bjerknes Centre for Cli-

mate Research (BCCR) Climate Model version 2 (BCM2)]

may be affected more by noise than models with multiple

realizations [e.g., the Goddard Institute for Space Studies

Model E-R (GISS-ER)]. For 8 of the 24 models, only one

realization for each scenario was available.

The spatial resolution for SLP and SST in the models

varies between models and within the same model for

atmospheric and oceanic variables. To facilitate com-

parisons with the observations, the SLP and SST fields

are interpolated onto the same grids as their observa-

tional counterparts (i.e., 2.58 3 2.58 for SLP and 28 3 28

for SST). For analyses in the North Pacific, the spatial

domain is defined as 158–708N in latitude and from 808E

to 658W in longitude. For EOF analyses of the tropical

Pacific only, the spatial domain is changed in latitude to

208S–208N. When exploring North Pacific and tropical

Pacific connections together, we use the latitudinal do-

main 408S–708N. These same domains are used for ob-

servational analyses.

Temporally, output from model years 1900–99 rep-

resents twentieth-century climate, while model years

2001–2100 are used for the twenty-first century.1 Though

the model analyses span a longer period of time than the

observations, the leading modes of SSTa and SLPa

variability in space are generally insensitive to whether

the same time periods are chosen or not. Thus, our

analyses and conclusions are not greatly affected by this

difference in time.

c. Statistical techniques

The primary statistical techniques used to isolate

patterns of climate variability in the Pacific are tradi-

tional EOF and combined EOF (cEOF) analysis of the

SLPa and SSTa fields. Traditional EOF analysis aims to

break a large dataset with many state vectors, repre-

sented by A, into a smaller set of state vectors that ex-

plains a large fraction of the variability in the original

dataset. With cEOF analysis, two or more variables are

placed into A, which is subsequently decomposed using

singular value decomposition (SVD; e.g., Bretherton

et al. 1992). Hence, the resulting matrices depict shared

patterns of variability among several variables.

For EOF analysis, each field is weighted by the square

root of the cosine of latitude before computing the

1 The time span for the models in each scenario is different.

Some models include the year 2000 in the 20C3M scenario, while

others include the year 2000 in the SRES A1B scenario. For that

reason, the year 2000 is excluded from the analysis.
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eigenvalues and eigenfunctions of A. For cEOF analysis,

SLPa and SSTa are used to construct A. Because the two

fields have different variances and magnitudes, each

field is normalized separately before applying SVD. The

SLPa field is first normalized by the standard deviation

at each latitude to account for the greater variance in

SLP in the extratropics. Then, both fields are standard-

ized by the mean standard deviation in the respective

field before SVD analysis is performed. Only the two

leading patterns of climate covariability are retained, as

these two patterns pass the significance test of North

et al. (1982) and are also of most interest for our study on

NPDV.

For both EOF and cEOF analyses, the anomaly fields

are calculated by removing the climatological monthly

mean from the raw fields. The anomalies are then line-

arly detrended, and a 3-month temporal filter is applied

before eigenanalysis. Furthermore, we retain only the

December, January, and February (DJF) values of the

filtered fields. The choice of using winter values only

versus the entire year was made because the North Pa-

cific atmosphere–ocean connections are dominant in the

boreal winter months. Expansion coefficient (EC) time

series are obtained by projecting individual unfiltered

monthly-mean anomaly maps onto the corresponding

EOF–cEOF spatial pattern for each mode. These time

series are then used for all temporal analyses. Table 2

provides a list of the nomenclature used to refer to the

various EOFs, cEOFs, and EC time series presented in

this paper.

To explore the temporal variability of the leading

SLPa and SSTa patterns, spectral analysis is used. All

power spectra are normalized so that the area under

the individual spectrum is unity. Hence, the values

represented in the power spectra are the percentage of

total variance explained at that frequency. Periods with

significant power are determined using the method

outlined in Torrence and Compo (1998)—a mean nor-

malized red-noise spectrum is calculated for the partic-

ular index, and the 95% confidence spectrum is then

TABLE 1. List of models from the IPCC AR4 analyzed in this study, along with the number of realizations available for processing for

both the 20C3M and SRES A1B scenarios. Abbreviations used are as follows: Commonwealth Scientific and Research Organization

(CSIRO); National Oceanic and Atmospheric Administration (NOAA); National Aeronautics and Space Administration (NASA).

Originating Group, Country Model name

Realizations

(20C3M/SRES A1B)

Bjerknes Centre for Climate Research, Norway BCCR-BCM2.0 1/1

Canadian Centre for Climate Modeling and Analysis, Canada CGCM3.1 (T47) 5/5

Canadian Centre for Climate Modeling and Analysis, Canada CGCM3.1 (T63) 1/1

Météo-France/Centre National de Recherches Météorologiques, France CNRM-CM3 1/1

CSIRO Atmospheric Research, Australia CSIRO3.0 3/1

CSIRO Atmospheric Research, Australia CSIRO3.5 1/1

NOAA Geophysical Fluid Dynamics Laboratory, United States of America GFDL CM2.0 3/1

NOAA Geophysical Fluid Dynamics Laboratory, United States of America GFDL CM2.1 3/1

NASA Goddard Institute for Space Studies, United States of America GISS-AOM 2/2

NASA Goddard Institute for Space Studies, United States of America GISS-EH 5/3

NASA Goddard Institute for Space Studies, United States of America GISS-ER 9/5

Institute of Atmospheric Physics, China IAP FGOALS-g1.0 3/3

Instituto Nazionale di Geofisica e Vulcanologia (INGV) and Max

Planck Institute for Meteorology, Italy/Germany

INGV ECHAM4 1/1

Institute of Numerical Mathematics, Russia INM-CM3.0 1/1

Institute Pierre Simon Laplace (IPSL), France IPSL Coupled Model,

version 4 (CM4)

1/1

Center for Climate System Research, Japan MIROC(hires) 1/1

Center for Climate System Research, Japan MIROC(medres) 3/3

Meteorological Institute of the University of Bonn and Meteorological

Research Institute of KMA, Germany/Korea

MIUBECHOG 5/3

Max Planck Institute for Meteorology, Germany MPI ECHAM5 4/4

Meteorological Research Institute, Japan MRI CGCM2.3.2 5/5

National Center for Atmospheric Research, United States of America NCAR CCSM3.0 8/7

National Center for Atmospheric Research, United States of America NCAR PCM1 4/4

Hadley Centre for Climate Prediction and Research/Met Office,

United Kingdom

UKMO HadCM3 2/1

Hadley Centre for Climate Prediction and Research/Met Office,

United Kingdom

UKMO HadGEM1 2/1

3052 J O U R N A L O F C L I M A T E VOLUME 24



found by multiplying the red noise spectrum by the

appropriate F statistic. Only peaks exceeding the value

of the significance spectrum as a function of period are

then plotted. Significance testing for changes in variance

of the power spectra between the 20C3M and SRES

A1B scenarios uses the F statistic.

Significance testing for correlations in time and space

is done through a Monte Carlo approach. Two-thousand

red-noise time series with the same lag-1 correlation

coefficient of each series are simulated, and the proba-

bility density function (PDF) of the cross correlation

between those simulated series is computed. Desired

significance levels are found by computing the area un-

der the PDF and comparing those values to the cross

correlation between our two time series to accept or

reject the null hypothesis.

Finally, the ensemble-mean statistics for the models

are computed as the mean of the individual statistic

being analyzed. For example, the ensemble-mean lead-

ing pattern of variability of North Pacific SSTa is cal-

culated as follows: 1) the leading EOF is computed for

each model, and then the SSTa from the model are

regressed onto the standardized first principal compo-

nent time series; 2) the sign of the anomalies are changed

such that the sign of one of the poles in the pattern

matches among the models; and 3) the individual re-

gression maps are averaged together. Similarly, for

power spectra, the individual normalized power spectra

of the models are averaged together to get the power

spectrum of the ensemble mean of the models.

3. Leading modes of North Pacific SSTa in present
and future climate

The study begins by extending the statistical analysis

of Overland and Wang (2007), who explored changes of

the first leading mode of North Pacific SSTa (i.e., the

PDO) in the IPCC models, to also include the second

leading mode. Figure 1 compares the two leading modes

(EOF-1SST and EOF-2SST) from observations (Figs. la

and 1b) to the mean EOF patterns from the models

(Figs. lc and 1d). In the observations, the canonical PDO

pattern emerges in EOF-1SST (Fig. 1a), with negative

central North Pacific SSTa encircled by positive SSTa

to the east. The temporal evolution of the first mode

(EC-1SST) closely tracks the monthly PDO index (down-

loaded from http://jisao.washington.edu/pdo/PDO.latest);

the correlation between the two time series is r 5 0.71

(p , 0.01). The second leading pattern of SSTa (Fig. lb)

exhibits a northeast–southwest-oriented tripole, which

is very similar to the SSTa regression pattern associated

with the NPGO index and that of the Victoria Mode

(Bond et al. 2003). The correlation between the tem-

poral evolution of the second mode (EC-2SST) and the

monthly NPGO index (downloaded from http://ocean.

eas.gatech.edu/npgo) is r 5 0.28 ( p , 0.05). The ensem-

ble-mean EOF-1SST (Fig. lc) compares visually well with

the observations, while there are two main differences

for EOF-2SST (Fig. 1d): the lack of the tripole structure

and the placement of the positive anomaly closer to the

North American coast compared to observations (Figs.

lb and 1d).

Spatial correlations between individual model pat-

terns of EOF-1SST and EOF-2SST and the observational

counterparts are shown in Fig. 2. All shaded correlations

exceed the 95% significance level. For EOF-1SST and

EOF-2SST the spatial correlations for the ensemble-

mean patterns are r 5 0.76 and r 5 0.81, respectively.

Note that spatial correlations vary considerably among

individual models, with some [e.g., the Meteorological

Institute of the University of Bonn, ECHO-G Model

(MIUBECHOG) and NCAR Community Climate

System Model, version 3 (CCSM3)] having lower spatial

correlations for both North Pacific SST EOFs than the

TABLE 2. Abbreviations for various EOF and cEOF patterns and EC time series used in this paper.

Abbreviation Description

EOF-1SST/EOF-1SLP The spatial representation of the leading mode of variability

of North Pacific boreal winter SSTa/SLPa.

EOF-2SST/EOF-2SLP The spatial representation of the second leading mode of variability

of North Pacific boreal winter SSTa/SLPa.

cEOF-1SST/cEOF-1SLP The spatial representation in SSTa/SLPa space of the leading mode

of covariability between North Pacific boreal winter SSTa and SLPa.

cEOF-2SST/EOF-2SLP The spatial representation in SSTa/SLPa space of the second leading

mode of covariability between North Pacific boreal winter SSTa and SLPa.

EOF-ltropics-SST/EOF-2tropics-SST The leading/second leading mode of variability of tropical Pacific boreal winter SSTa.

EC-1SST/EC-1SLP The monthly expansion coefficient time series associated with EOF-1SST/EOF-1SLP.

EC-2SST/EC-2SLP The monthly expansion coefficient time series associated with EOF-2SST/EOF-2SLP.

cEC-1SST/cEC-1SLP The monthly expansion coefficient time series associated with cEOF-1SST/cEOF-1SLP.

cEC-2SST/cEC-2SLP The monthly expansion coefficient time series associated with cEOF-2SST/cEOF-2SLP.

EC-ltropics-SST/EC-2tropics-SST The monthly expansion coefficient time series associated with EOF- ltropics-SST/EOF-2tropics-SST.
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ensemble mean, while others [e.g., both Model for In-

terdisciplinary Research on Climate (MIROC) models]

have higher correlations than the ensemble mean.

The spatial patterns of EOF-1SST and EOF-2SST re-

main virtually unchanged for the future with significant

spatial correlations between the ensemble mean and the

observations (not shown). Individual model spatial corre-

lations differ between the 20C3M and SRES A1B scenarios

but not significantly, suggesting that spatially the leading

patterns of North Pacific SSTa are statistically stationary.

Figure 3 presents the power spectra for the two

leading patterns of North Pacific SSTa. The ensemble-

mean power spectrum of the models for the EC-1SST

index closely resembles that of the observations for the

twentieth century (Fig. 3a). Almost all models exhibit

power in the decadal (10–20 years) band, although to

varying degrees. The BCCR-BCM2.0, the Geophysical

Fluid Dynamics Laboratory Climate Model version 2.0

(GFDL CM2.0), and the GISS Model E-H (GISS-EH)

have the strongest power in the decadal bands, while

the Commonwealth Scientific and Industrial Research

Organisation Mark version 3.5 (CSIRO3.5) and the

NCAR–PCM1 models exhibit weaker decadal-scale

power. For the second mode (EC-2SST; Fig. 3b), the

results are less consistent with observations. The ob-

served EC-2SST power spectrum has a generally weak,

broad spectrum with two significant peaks—one at 7–12

years and the other at 4–5 years. The ensemble-mean

power spectrum, by contrast, has its maximum power in

the 15–20-yr band with decreasing power toward higher

frequencies. Individual model members follow the

characteristics of the ensemble-mean power spectrum

except for the GFDL CM2.1, which captures the inter-

annual peak seen in observations. Differences in power

spectra between the 20C3M and SRES A1B scenarios

for the EC-1SST and EC-2SST indices are insignificant in

nearly every model (not shown). Only two models (the

BCCR-BCM2.0 and the GISS-EH) predict significant

increases power at higher frequencies (2–5 years) for

both leading modes; however, since these models have

low spatial correlations with observations (Fig. 2), we

discount these results.

We also examine how much of the total variance is

explained by the two leading modes of the models

compared to observations. Table 3 presents the variance

of the model EC-1SST and EC-2SST indices (columns 2

FIG. 1. (a) Regression of observed DJF SSTa (8C) onto the standardized first principal component time series of

observed North Pacific DJF SSTa. Percent variance explained by the mode is given in the title. (b) As in (a), but using

the standardized second principal component time series of North Pacific DJF SSTa. (c) The mean of the regression

patterns of model DJF SSTa onto the standardized first principal component time series of model DJF North Pacific

SSTa (i.e., the ensemble-mean pattern). (d) As in (c), but for the standardized second principal component time

series of North Pacific DJF SSTa.
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and 3), normalized by the variance of the observed in-

dex, for both the 20C3M and SRES A1B scenarios. This

normalization facilitates comparison among the models

and also between the 20C3M and SRES A1B scenarios.

For the EC-1SST index in the 20C3M output, most of the

models have much smaller variance than the observed

index, with the GISS Atmosphere–Ocean Model (GISS-

AOM), the GISS-ER, and the MIROC high resolution

[MIROC(hires)] having variances less than 10% of

the observed index (Table 3, column 2). Only two mod-

els have variances for the EC-1SST index greater than

observed [the Institute of Numerical Mathematics

Coupled Model, version 3.0 (INM-CM3.0) and NCAR–

PCM1). By contrast, for the 20C3M EC-2SST index

(Table 3, Column 3), every model except for three

[again, the GISS-AOM, GISS-ER, and MIROC(hires)]

has a variance in its index larger than that in observa-

tions, ranging from double (e.g., the NCAR CCSM3.0

model) to nearly 12 times the observed variance (the

MIUBECHOG model). When looking at differences

between the 20C3M and SRES A1B scenarios, we find

no consensus in the direction of change in variance of

either index among the models, though the ensemble

mean suggests a decrease in variance for both indices.

4. Relations between North Pacific atmospheric
and oceanic variability

The leading modes of North Pacific SSTa variability

are a combination of both intrinsic variability in the

ocean and a response to external forcing by the over-

lying extratropical atmosphere (e.g., Pierce et al. 2001;

Miller et al. 2004; Chhak et al. 2009). For coupled cli-

mate models to capture NPDV accurately, we should

expect that similar covariances and ocean–atmosphere

dynamical links exist in the models. This section offers

tests for the covariability between SLPa and SSTa in the

North Pacific and an AR-1 model to evaluate the degree

of forcing the North Pacific atmospheric circulation

contributes to the forcing of the dominant modes of

oceanic variability in the region.

a. Leading modes of North Pacific SLPa
in the IPCC models

Before performing an analysis of the coupled ocean–

atmosphere modes of variability in the North Pacific, we

compare the leading patterns of atmospheric variability

in the SLPa fields for each model to observations. We

find that the spatial correlations of the leading two

North Pacific SLP EOFs in the models versus the ob-

servations are high and significant (Fig. 2) and typically

higher than the North Pacific SST EOFs. The power

spectra of the leading two SLP EOFs in the models

compare well with the observations with a broad range

of low power for low and high frequencies. There is

no statistically significant difference between the en-

semble mean and observed power spectrum for either

the EC-1SLP or EC-2SLP index (not shown).

FIG. 2. Spatial correlations of the leading EOFs and cEOFs of North Pacific wintertime SLP and SST between the

20C3M runs of the models and observations. Only spatial correlations exceeding the 95% significance level are

shaded.
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b. Coupled patterns of variability in the
North Pacific Ocean and atmosphere

Figure 4 displays the two leading cEOF patterns be-

tween North Pacific SLPa and SSTa in observations

during boreal winter. Together, the first two patterns

explain 38% of the covariability in the two variables.

The first pattern is dominated by a broad area of nega-

tive SLPa in the central and eastern North Pacific basin

(Fig. 4a). This loading center resides to the south and

east of the climatological center of the AL. The corre-

sponding SSTa pattern (Fig. 4b) resembles the positive

phase of the PDO displayed in Fig. la (r 5 0.98; p ,

0.01). Moreover, the cEC-1SST and EC-1SST indices are

correlated at r 5 0.99 (p , 0.01). For cEOF-2, the SLPa

pattern (Fig. 4c) shows a distinct dipole, with centers

of opposing sign over the Aleutian Islands and just north

of Hawaii, representing the NPO (Walker and Bliss

1932; Rogers 1981; Linkin and Nigam 2008). The co-

varying SSTa pattern (Fig. 4d) portrays cold anomalies

stretching from the southwestern North Pacific toward

the northeast, surrounded by warm anomalies extending

from the Kamchatka Peninsula southeastward toward

North America and around to Hawaii. The spatial pat-

tern is highly similar to that in Fig. lb (r 5 0.89; p , 0.01),

although there is a notable difference in the magnitude

of the positive anomaly in the northernmost Pacific and

in the positive anomalies in the subtropical North Pa-

cific. When the spatial pattern in Fig. 4d is compared to

the NPGO SSTa regression pattern, the spatial correla-

tion is r 5 0.76 (p , 0.01). Moreover, the cEC-2SST index

is significantly correlated with the EC-2SST index (r 5

0.88; p , 0.01) and the NPGO index (r 5 0.60; p , 0.01).

When performing the same cEOF analysis on the

20C3M model output, we find substantial differences in

the SLPa and SSTa fields in the two leading cEOF

FIG. 3. (a) Power spectra (% of total variance explained) of the EC-1SST index as a function of period (yr) for

observations, the ensemble-mean of the models, and the 20C3M runs of the IPCC models. (b) As in (a), but for the

EC-2SST index. Only significant power values ( p , 0.05) are shaded (see text for details on significance testing).
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patterns (Fig. 5). The ensemble-mean patterns of SST

and SLP for cEOF-1 (Figs. 5a and 5b) resemble overall

those of the observations (spatial correlations shown

in Fig. 2), albeit with two major differences: 1) the rep-

resentation of the AL is oriented more zonally in the

ensemble-mean pattern and encompasses most of the

North Pacific basin with its center of action displaced

toward the west; and 2) the SSTa pattern displays an

elongated southwest–northeast negative pole, unlike the

concentrated negative pole prominent in the observa-

tions (Fig. 4b). For cEOF-2, the SLPa pattern (Fig. 5c)

is significantly correlated with the observations (r 5

0.90) with the typical dipole structure of the NPO. In the

SSTa field (Fig. 5d), the ensemble-mean SSTa pattern

of cEOF-2 displays a weak tripole, and the positive

anomalies do not extend into the eastern subtropical

Pacific as in the observations. The spatial correlation

between the ensemble-mean EOF-1SST (EOF-2SST) and

cEOF-1SST (cEOF-2SST) is r 5 0.78 (r 5 0.59), which is

significant at the 99% (95%) level.

When comparing cEOF-1SST and cEOF-2SST from

each model with observations (Fig. 2) we generally find

weaker correlations than the ones obtained by com-

paring the SST patterns inferred from the traditional

EOF analysis. Six of the 24 models display insignificant

spatial correlations for both cEOF-1SST and cEOF-2SST

(Fig. 2). For the atmospheric cEOF patterns, spatial

correlations are generally higher than the oceanic cEOF

patterns, though four models have insignificant spatial

correlations for cEOF-2SLP (Fig. 2, column 8). As with

the North Pacific SSTa EOFs, the cEOF patterns in both

SLPa and SSTa remain unchanged spatially when ex-

amining the SRES A1B output.

c. Reconstructing the cEC-1SST and cEC-2SST

indices using a simple AR-1 model

The atmospheric patterns depicted in the cEOF anal-

yses are also dynamically linked to the leading modes of

North Pacific SSTa variability. Latif and Barnett (1996)

and Pierce et al. (2001) suggested that the leading

pattern of North Pacific SSTa variability (i.e., the PDO)

is forced through stochastic atmospheric forcing, pri-

marily that due to the AL. Chhak et al. (2009) used

output from an ocean model to illustrate that NPGO

variability is forced, at least in part, by variability in the

NPO. Given the similarities between the PDO/cEOF-

1SST and the NPGO/cEOF-2SST in observations, we

employ a simple AR-1 model to check for consistency

between the atmospheric forcing patterns and North Pa-

cific SSTa variability. This test solely explores the degree

to which the atmospheric forcing patterns are connected

to the underlying covariability SSTa patterns in both the

observations and models. The AR-1 model equations are

d(cEC-1SST-rec)

dt

5 bcEC-1AL(t) 2
cEC-1SST-rec(t)

tcEC-1

1 «1(t), and

(1)

d(cEC-2SST-rec)

dt

5 bcEC-2NPO(t) 2
cEC-2SST-rec(t)

tcEC-2

1 «2(t), (2)

where AL(t) and NPO(t) are defined as the cEC-1SLP

and cEC-2SLP time series, respectively, «(t) represents

error/noise in the AR-1 model, and the subscript ‘‘rec’’

indicates that the indices are the reconstructed versions

of the original indices. The coefficients (tcEC-1, tcEC-2,

bcEC-1, and bcEC-2) are determined using least squares

fitting. A simple Euler forward time step scheme is used

in solving (1) and (2).

Figures 6 and 7 show the results of the AR-1 model for

the cEC-1SST (Fig. 6) and cEC-2SST (Fig. 7) indices. In

observations, the results indicate that AL variability

accounts for about 32% of the variance of the cEC-1SST

TABLE 3. Normalized variance (i.e., actual variance divided by

the variance of the same index in observations; dimensionless) of

the EC-1SST and EC-2SST indices. Variance shown for both sce-

narios (20C3M/SRES A1B).

Model Name (data) VAR (EC-1SST) VAR (EC-2SST)

BCCR-BCM2.0 0.69/0.34 3.65/2.33

CGCM3.1 (T47) 0.19/0.14 1.55/1.01

CGCM3.1 (T63) 0.25/0.18 1.17/0.78

CNRM-CM3 0.70/0.58 3.52/4.29

CSIRO3.0 0.10/0.11 1.22/1.74

CSIRO3.5 0.25/0.08 1.41/1.81

GFDL CM2.0 0.63/1.25 6.50/4.72

GFDL CM2.1 0.38/0.14 6.07/1.14

GISS-AOM 0.02/0.04 0.40/0.49

GISS-EH 0.54/0.29 5.07/3.28

GISS-ER 0.05/0.09 0.55/0.74

IAP FGOALS-g1.0 1.00/0.56 8.95/2.89

INGV ECHAM4 0.21/0.04 2.29/0.20

INM-CM3.0 1.83/0.97 7.42/6.78

IPSL CM4 0.33/0.15 1.32/2.07

MIROC(hires) 0.08/0.11 0.70/1.11

MIROC(medres) 0.13/0.26 1.27/2.37

MIUBECHOG 0.82/0.53 11.94/9.36

MPI ECHAM5 0.66/0.69 7.43/7.00

MRI CGCM2.3.2 0.87/0.81 4.12/3.37

NCAR CCSM3.0 0.58/0.67 2.08/2.45

NCAR PCM1 1.37/1.03 8.10/5.51

UKMO HadCM3 0.55/0.77 4.56/2.27

UKMO HadGEM1 0.35/0.27 4.16/5.34

Ensemble mean 0.53/0.42 3.98/3.04

Observations 1.00 1.00
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index (Fig. 6a), while NPO variability contributes to

about 40% of the variance of the cEC-2SST index (Fig.

7a). For the cEC-1SST index in the models (Fig. 6b), every

model but one [the Canadian Centre for Climate Mod-

elling and Analysis Coupled General Circulation Model,

version 3.1 (CGCM3.1) (T47), r 5 0.14] shows significant

( p , 0.05) correlations between their cEC-1SST and cEC-

lSST-rec indices. Significant correlation values range from

r 5 0.63 for the Max Planck Institute (MPI) ECHAM5

model to r 5 0.88 for the Meteorological Research In-

stitute Coupled General Circulation Model, version 2.3.2

(MRI CGCM2.3.2). The ensemble-mean correlation for

the reconstruction of the cEC-1SST index with the AR-1

model is r 5 0.75 or 56% of total variance explained.

For the cEC-2SST index (Fig. 7b), less reproducibility

exists. Seven of the 24 models [the BCCR-BCM2.0,

CGCM3.1 (T47), CGCM3.1 (T63), GISS-EH, Institute

of Atmospheric Physics (IAP) Flexible Global Ocean–

Atmosphere–Land System Model gridpoint version 1.0

(FGOALS-g1.0), INMCM3.0, and NCAR-CCSM3.0]

have small, insignificant correlations. The remaining

models show significant (p , 0.05) correlations ranging

from r 5 0.24 for the Centre National de Recherches

Météorologiques Coupled Global Climate Model, ver-

sion 3 (CNRM-CM3) to r 5 0.74 for the MIROC(hires)

model. The mean correlation among all models for the

reconstruction of the cEC-2SST index is r 5 0.47, or 22%

of total variance explained, which is considerably lower

than the correlation derived from observations (r 5 0.63

or 40% of variance explained). This result suggests that

cEOF-2SST is less consistent with direct atmospheric

forcing by the NPO in the models than what is observed.

Table 4 shows the t values derived for the AR-1

model results. For the cEC-1SST index, tcEC-1 values for

all of the models except for the CGCM3.1 (T47) model

are smaller than that seen in observations (10.2 months),

with the ensemble-mean tcEC-1 equal to 6.2 months. The

lower-than-observed tcEC-1 values suggest that the SST

in the coupled models exhibit less memory in their

leading mode of North Pacific SSTa, allowing more of

the high-frequency atmospheric forcing (i.e., the AL) to

contribute and drive the oceanic signal. For the cEC-2SST

reconstruction, the ensemble-mean value for tcEC-2 is

8.8 months, which is larger than that from observations

(5.8 months). For individual models, the six models with

the largest values of tcEC-2 are also those models with

insignificant correlations in the AR-1 model test (Fig. 7b).

This suggests that these coupled models generally ex-

hibit more memory in the second covariability climate

pattern in SSTa and have less dependence on high fre-

quency NPO forcing. This conclusion is also supported

by Fig. 3b—recall that the maximum power for the models

FIG. 4. Regression of observed DJF (a) SLPa (hPa) and (b) SSTa (8C) onto the standardized first principal

component time series of the combined EOF analysis of North Pacific DJF SLPa–SSTa. Percent covariance ex-

plained by the mode is given in the title. (c) As in (a), but using the standardized second principal component time

series of the combined EOF analysis of North Pacific DJF SLPa–SSTa. (d) As in (b), but using the standardized

second principal component times series of the combined EOF analysis of North Pacific DJF SLPa–SSTa.
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is generally concentrated at periods greater than 10 years,

unlike the ‘‘double peak’’ at decadal and interannual time

scales in the observed spectrum.

Studies of North Pacific SST variability have identi-

fied reemergence as a significant component contrib-

uting to NPDV (e.g., Alexander et al. 1999; Deser et al.

2003). Indeed, the presence of reemergence means

that North Pacific SST variability in general cannot

be modeled entirely as an AR-1 process, but the lead-

ing modes and coupled modes of variability may still

contain a significant component related to an AR-1

process. For example, in using the same AR-1 model as

(1) but using the EC-1SLP time series as the forcing,

b 5 1, and t 5 5 months (i.e., the decorrelation time

scale for the PDO index), the correlation between the

actual PDO index (downloaded from http://jisao.

washington.edu/pdo/PDO.latest) and the reconstruction

is r 5 0.64, which is significant at the 99% level. Thus,

nearly 41% of the variability in the PDO index can be

captured with the simple AR-1 model using AL vari-

ability as forcing. To test if the assumption of an AR-1

process is consistent with the cECs, Fig. 8 presents the

winter-to-winter autocorrelation functions (ACFs) for

the cEC-1SST (Fig. 8a) and cEC-2SST indices (Fig. 8b) for

the observations (red line), the individual models (gray

lines), and the ensemble-mean ACF (black line). For

the models, there is a lot of spread amongst the ACFs

(Fig. 8a, gray lines), though most of the models appear

to have a simple exponential decay in their ACFs. For

the observed cEC-1SST index, the decay in the ACF over

time is punctuated by brief ‘‘bumps’’ at lags of 5 and 10

years, which fall within the model ACF spread and are

not statistically significant according to a Monte Carlo

test. Some of the model ACFs exhibit some signature

of longer-term memory, but the ensemble-mean cEC-

1SST ACF (Fig. 8a, black line) displays a strictly ex-

ponential decay, which offers evidence that the AR-1

modeling approach is adequate to explore the rela-

tionship between the atmospheric forcing and oceanic

response in the cECs.

The ACFs for the cEC-2SST index (Fig. 8b) indicate

some consistency with our previous observation of longer-

term memory of the second leading SST covariability

pattern in the models. Note that for short lags (less than

4 years), the ensemble-mean ACF of the cEC-2SST index

generally has a slower rate of decay than the observed

(black line compared to the red line in Fig. 8b). These

higher correlations in the ensemble-mean ACF do indicate

FIG. 5. The ensemble-mean leading pattern of covariability obtained through averaging individual regression maps

of the model North Pacific DJF (a) SLPa (hPa) and (b) SSTa (8C) fields from the standardized first principal com-

ponent time series of the combined EOF of North Pacific DJF SLPa–SSTa. (c) As in (a), but using the standardized

second principal component time series of the combined EOF analysis of North Pacific DJF SLPa–SSTa. (d) As in

(b), but using the standardized second principal component times series of the combined EOF analysis of North

Pacific DJF SLPa–SSTa. Results are shown for the 20C3M runs.
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that the model has less dependency on atmospheric

forcing for this mode of variability than observations

would suggest. For later lags, the ensemble-mean ACF

of the cEC-2SST index continually decays slowly yet still

exponentially toward 0 and remains close to 0 at later

lags, while the observed ACF of the cEC-2SST index

rebounds toward positive correlations after a lag of 10

years (Fig. 8b). The individual models have a more

complicated structure, however, with most of them

showing positive (and negative) correlations extending

out past 10–15-yr lags. Indeed, the ensemble-mean ACF

at large lags reflects the spread in positive and negative

correlations there, resulting in an ensemble-mean ACF

that hovers near 0.

In summary, the AR-1 model results suggest that the

models are strongly influenced by the AL in driving their

leading SSTa covariability pattern but are less de-

pendent on atmospheric forcing for their second leading

SSTa covariability mode. Both of these results are

somewhat contrary to the observational results and thus

suggest issues with the ways the ocean components of

the models integrate forcing from the overlying North

Pacific atmosphere.

5. Connections between tropical Pacific climate
variability and NPDV in the models

a. Observational evidence

The previous two sections evaluated how extra-

tropical variability of the atmosphere and ocean affect

NPDV representation in the IPCC models. We now shift

focus to examining how the models capture the re-

lationship between tropical Pacific climate variability

and NPDV. This link is important because a significant

fraction of variability in NPDV can be explained from

tropical Pacific oceanic and atmospheric variability (e.g.,

Alexander et al. 2002; Deser et al. 2004; Schneider and

FIG. 6. (a) The observed cEC-1SST index (black line) and the cEC-lSST-rec index (gray line) from the AR-1 model

(see text). Correlation between the cEC-1SST and cEC-lSST-rec indices is shown and is highly significant ( p , 0.01;

double asterisk). (b) Correlations between the cEC-1SST and cEC-lSST-rec indices for the observations, the ensemble-

mean, and all 24 models for their 20C3M runs. Only correlations exceeding the 95% significance level are plotted.
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Cornuelle 2005; Alexander et al. 2008; Di Lorenzo et al.

2010). These links are primarily established by an at-

mospheric bridge whereby changes in the Hadley cell

and the location and intensity of tropical convection are

teleconnected to the midlatitude atmosphere and ocean.

For example, canonical ENSO activity projects onto the

variability of the AL and is integrated by the ocean,

providing a mechanism that drives the PDO (e.g.,

Alexander et al. 2002; Newman et al. 2003). Recently,

another link between North Pacific climate variability

and tropical Pacific SSTa has been identified through

CPW events (e.g., Ashok et al. 2007), defined as the

second leading mode of tropical Pacific SSTa. CPW

events have their maximum warming in the central

tropical Pacific instead of the eastern tropical Pacific

Ocean as during traditional ENSO events and conse-

quently excite unique teleconnection patterns in the

Northern Hemisphere in precipitation and SLP (Weng

et al. 2009). Like the ENSO–PDO connection, the CPW

phenomenon influences low frequency variability of the

NPGO (Di Lorenzo et al. 2010).

Given that the characteristics of NPDV in the short

observational record are strongly connected dynami-

cally to tropical variability, we implement a simple

analysis to extract the statistical signature of the links

between canonical ENSO and CPW variability and the

patterns of NPDV to test in the climate models. Figure 9

shows the regressions of wintertime SLPa and SSTa on

the EC-ltropics-SST and EC-2tropics-SST indices (calculated

from projection of monthly tropical Pacific SSTa onto

EOF-ltropics-SST and EOF-2tropics-SST, respectively). The

thick gray line in all plots denotes where correlations are

significant (p , 0.05). The SLPa regression pattern with

the EC-ltropics-SST index (Fig. 9a) displays the east–west

dipole of negative–positive SLPa indicative of changes

in the Walker circulation during warm ENSO events.

Moreover, negative anomalies exist in the AL region (cf.

the North Pacific sector of Fig. 9a with Fig. 4a). Almost

the entire North Pacific and tropical Pacific basin (minus

a section through the central portion) exhibit significant

correlations with the leading mode of tropical Pacific

SSTa.

FIG. 7. As in Fig. 6, but for cEC-2SST and cEC-2SST-rec.
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In the SSTa regression field (Fig. 9b), the canonical

ENSO pattern is visible in the equatorial Pacific. In the

North Pacific, the SSTa regression pattern has spatial

characteristics similar to EOF-1SST (Fig. la) and cEOF-

1SST (Fig. 4b). Together, these two figures are consistent

with previous studies showing that the leading mode of

tropical Pacific SSTa impacts the leading modes of SLPa

and SSTa in the North Pacific. Indeed, the correlation

between the EC-ltropics-SST index and the EC-1SST index

is 0.56, which is highly significant (p , 0.01).

Figures 9c and 9d illustrate the relationship between

the EC-2tropics-SST index and SLPa and SSTa in the Pa-

cific basin. For SLPa (Fig. 9c), a dipole in the North

Pacific exists and closely resembles the NPO-like pat-

tern in Fig. 4c. The positive and significant anomalies

across Alaska extend into central North America, which

coincides with the baroclinic expression of the NPO on

North American weather (Linkin and Nigam 2008). For

the SSTa field (Fig. 9d), the regression pattern in the

North Pacific resembles cEOF-2SST (Fig. 4d). When

comparing the EC-2tropics-SST and cEC-2SST indices, the

correlation is r 5 0.38, which is significant (p , 0.01) but

not high. In the tropical Pacific, positive SSTa extend

from the subtropical North Pacific into the central and

central-western tropical Pacific Ocean, with opposing

negative anomalies in the far eastern tropical Pacific.

Significance is restricted to the subtropical North Pacific

and tropical Pacific features of the pattern.

b. Model representation of tropical Pacific–North
Pacific teleconnections

The same analysis presented in section 5a is repeated

for the 20C3M runs of the models, and the ensemble-

mean regression patterns are displayed in Fig. 10. The

ensemble-mean SLPa regression pattern associated with

the leading mode of tropical Pacific SSTa in the models

(Fig. 10a) displays the east–west dipole in SLPa across

the tropical Pacific, although at a weaker scale (note

the different color bars between Figs. 9 and 10). In the

North Pacific, the SLPa pattern matches closely with its

TABLE 4. Values of t (months) for the AR-1 model reconstructions

for each model and the observations.

Model Name (data) tcEC-1 (months) tcsEC-2 (months)

BCCR-BCM2.0 6.2 15.7

CGCM3.1 (T47) 11.2 15.6

CGCM3.1 (T63) 6.7 19.8

CNRM-CM3 6.3 9.7

CSIRO3.0 5.3 7.2

CSIRO3.5 7.4 6.7a

GFDL CM2.0 8.5 7.4

GFDL CM2.1 6.6 7.0

GISS-AOM 3.1 3.9

GISS-EH 5.2 17.7

GISS-ER 4.4 6.8

IAP FGOALS-g1.0 8.3 12.4

INGV ECHAM4 5.7 5.7

INM-CM3.0 6.5 11.5

IPSL CM4 7.2 5.0

MIROC(hires) 4.1 3.2

MIROC(medres) 6.2 5.4

MIUBECHOG 6.2 8.9

MPI ECHAM5 6.3 8.6

MRI CGCM2.3.2 5.1 6.7

NCAR CCSM3.0 7.8 7.2

NCAR PCM1 3.5 4.8

UKMO HadCM3 6.1 8.0

UKMO HadGEM1 4.0 6.5

Ensemble mean 6.2 8.8

Observations 10.2 5.8

FIG. 8. (a) The winter-to-winter autocorrelation function (lags in years) of the cEC-1SST index for the observations

(red), ensemble-mean (black), and the 24 individual models (gray lines). (b) As in (a), but for the cEC-2SST index.

Dashed horizontal black line indicates r 5 0.
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observational counterpart (Figs. 9a and 10a). However,

unlike the observations, this North Pacific signal does

not project onto the mean location of the AL in the

models (see Fig. 5a). Moreover, the SLPa in the North

Pacific sector is void of significant correlations through-

out the basin. This lack of significant correlations in the

ensemble-mean pattern is related to the differences

among the models in the placement and magnitude of

the North Pacific SLPa response. In the SSTa field

(Fig. 10b), the canonical ENSO pattern is present in

the tropical Pacific Ocean though in a much narrower

band than in the observations. However, the North

Pacific SSTa has no coherent regression pattern and

thus no significant correlations. Hence, Figs. 10a and

10b indicate that the IPCC models generally have

little dependence between their leading mode of tropi-

cal Pacific SSTa variability and North Pacific climate

variability—a finding that echoes previous results by

Newman (2007).

The ensemble-mean regression patterns of SLPa and

SSTa with the EC-2tropics-SST index are shown in Figs.

10c and 10d, respectively. The SLPa regression pattern

(Fig. 10c) has substantial differences in structure in the

North Pacific from observations. The SLPa pattern

shows a broad region of negative anomalies throughout

the central North Pacific with positive anomalies across

northwest Canada and Alaska. This pattern is in stark

contrast to the NPO-like pattern seen in Fig. 9c and its

North American signature. Almost no area in the Pacific

basin has significant correlations in the SLPa field, again

reflecting the lack of consistency among the different

models for the atmospheric response to EOF-2tropics-SST.

The ensemble-mean SSTa regression pattern shows

the core of tropical Pacific warming displaced into the

warm-pool region. Moreover, in the North Pacific, the

SSTa regression pattern displays a pattern that resem-

bles more the ensemble-mean EOF-1SST pattern than

the ensemble-mean EOF-2SST or cEOF-2SST struc-

tures (Figs. 1d and 5d). This difference suggests that

variability associated with the leading mode of North

Pacific SSTa may have important connections with the

second leading mode of tropical Pacific SSTa in the

models.

To further explore the relationships between the two

leading tropical Pacific SSTa modes and the leading

mode of variability in the North Pacific, Table 5 shows

the correlation between the EC-ltropics-SST and EC-

2tropics-SST indices with the EC-1SST index in the models.

Column 2 of Table 5 shows the correlation between the

EC-ltropics-SST index and the EC-1SST index. In obser-

vations, the two indices are significantly correlated (r 5

0.56; p , 0.05). Only one model (the CSIRO3.5 model)

FIG. 9. (a) Regression of observed DJF SLPa (hPa) on the standardized EC-ltropics-SST index. Thick gray line

outlines the region where correlation coefficients exceed the 95% significance level. (b) As in (a), but for DJF SSTa

(8C). (c) Regression of observed DJF SLPa (hPa) on the standardized EC-2tropics-SST index. Thick gray line as in (a).

(d) As in (c), but for DJF SSTa (8C).
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has a correlation nearly that high (r 5 0.60). Of the re-

maining models, only seven models have significant

(p , 0.05) correlations between their EC-1tropics-SST and

EC-1SST indices. By contrast, five models [the BCCR-

BCM2.0, the CGCM3.1 (T63), and the three GISS

models] display almost zero correlation between the two

indices. The mean correlation in the models between the

EC-ltropics-SST and EC-1SST indices is 0.25, which is well

below that in observations. By contrast, the correlation

between the EC-2tropics-SST and EC-1SST indices in ob-

servations is small and insignificant (r 5 0.17). However,

nine of the 24 models show significant correlations be-

tween their EC-2tropics-SST and EC-1SST indices, with

significant correlations ranging from r 5 0.21 for the

CSIRO3.5 model to r 5 0.69 for the third climate con-

figuration of the Met Office (UKMO) Unified Model

(HadCM3). The ensemble-mean correlation for the

models is 0.28, which is close to the ensemble-mean

correlation between the EC-ltropics-SST and EC-1SST

indices.

6. Discussion and conclusions

Characterizing NPDV in coupled climate models and

their predictability skill for short-term and long-term

climate are critical research questions in climate dy-

namics today. Accurately representing in the models the

two leading patterns of oceanic and atmospheric vari-

ability in the region is integral to answering these

questions, as these modes have profound effects on

sensible weather downstream through teleconnections

and on biological and ocean properties important to

coastal ecosystems in the North Pacific. Moreover, both

modes are important at decadal time scales, meaning

their representation in the models is important for fu-

ture climate change studies. Most previous studies have

looked at characterizing changes in the North Pacific or

in the ENSO phenomenon in climate models in isolation

from each other. This study complements those studies

and goes further by exploring both North Pacific and

tropical Pacific climate variability of the IPCC AR4

models when evaluating NPDV. Moreover, we include

every realization from each model, in the 20C3M and

SRES A1B scenarios, providing a comprehensive ex-

amination of NPDV in the coupled climate models.

When testing North Pacific-only variables, the models

reliably reproduce the two leading oceanic patterns of

variability with high spatial similarity to their observa-

tional counterparts (Figs. 1 and 2). Yet, the frequency

of those patterns does not agree among the models. For

FIG. 10. (a) Ensemble-mean regression pattern of DJF SLPa (hPa) on the standardized EC-ltropics-SST index. Thick

gray line outlines the region where correlation coefficients exceed 60.2. (b) As in (a), but for DJF SSTa (8C).

(c) Ensemble-mean regression pattern of DJF SLPa (hPa) on the standardized EC-2tropics-SST index; thick gray line

is as in (a). (d) As in (c), but for DJF SSTa (8C).
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the first SSTa mode (EC-1SST), every model shows the

strongest power at the decadal time scales (Fig. 3a), but

the total variance in the model indices is less than ob-

served (Table 3, column 2). For the EC-2SST index,

however, all models have their strongest power in the

10–20-yr band, while the observations have a dual-peak

signature with local maxima at about 5 and 10 years.

Another general issue with the models is that their EC-

2SST indices exhibit much more variance than observed

(Table 3, column 3). This higher-than-observed vari-

ance, along with different spectral characteristics of the

index, lowers confidence in the predictability of NPDV

and even global climate change based on these models.

For implications on future climate change, the cou-

pled climate models show no consensus on projected

future changes in the frequency of either the first or

second leading pattern of North Pacific SSTa. Neither

the difference in power spectra (not shown) nor changes

in variances of the indices (Table 3) displays consistent

changes between the twentieth and twenty-first centu-

ries in the models. The lack of a consensus in changes in

either mode also affects confidence in projected changes

in the overlying atmospheric circulation. Work by

Bengtsson et al. (2006), Teng et al. (2008), and Ulbrich

et al. (2008) suggest that global climate change will in-

fluence changes in storm tracks and hence could in-

fluence the strength and location of planetary waves and

associated climatological features like the AL. Since the

wind stress curl induced by the AL and NPO are drivers

to the leading modes of North Pacific SSTa, we would

expect that changes in their characteristics would change

the dominant SSTa patterns. There appears to be a dis-

connect in this aspect of the models that needs to be

addressed.

The results of the AR-1 model test also present more

differences between the models and observations in the

temporal evolutions of the leading two North Pacific

SSTa cEOF patterns. The cEC-1SST index can be re-

constructed by forcing the AR-1 model with the atmo-

spheric variability of the AL in both observations and

models (Fig. 6), though the correlations between the

original and reconstructed indices in the models are

much higher than in observations. The cEC-1SST index

also appears to have a shorter ‘‘memory’’ in the models

than observation (Table 4 and Fig. 8a). For the cEC-2SST

index (Fig. 7), NPO variability contributes significantly

to the index in observations, but the integration of the

NPO forcing is more challenging for the models (Fig.

7b). For some models, the NPO does not drive the

pattern given by cEOF-2SST. We also find that the

memory associated with the second mode is longer in

the models than in observations (Table 4), suggesting

that the second mode in the models may be tracking an

internal ocean mode that is not directly forced by the

atmosphere. Indeed, some models that exhibit poor skill

in reconstructing the cEC-2SST index (Fig. 7) also per-

form poorly in reproducing the NPO pattern spatially

(cEOF-2SLP; Fig. 2).

Finally, the coupled climate models display very weak

or nonexistent links between North Pacific climate var-

iability and the first two dominant modes of tropical

Pacific SSTa variability (i.e., ENSO and CPW). The

ensemble-mean SSTa and SLPa projections of the two

leading modes of tropical Pacific SSTa variability dis-

play little to no correlation over the North Pacific, with

the midlatitude atmospheric teleconnection having sig-

nificant differences in amplitude and structure than

observed (Figs. 10a and 10b). In the models, both the

first and second leading mode of tropical Pacific SSTa

project onto PDO-like variability in the North Pacific

unlike observations where only the canonical ENSO

signature projects significantly onto the AL–PDO

mode. In fact, in the ensemble mean, the second mode of

tropical Pacific SSTa variability projects onto the SSTa

pattern in cEOF-1SST. This inconsistency in the tele-

connection may be directly related to the very different

structure of the AL between the North Pacific analysis

TABLE 5. Correlations between tropical and North Pacific SST

indices for the IPCC models and observations. Correlations ex-

ceeding the 95% significance level are in bold.

Model

(data)

r(EC-ltropics-SST,

EC-1SST)

r(EC-2tropics-SST,

EC-1SST)

BCCR-BCM2.0 0.07 0.43

CGCM3.1 (T47) 0.26 0.15

CGCM3.1 (T63) 0.04 0.12

CNRM-CM3 0.15 0.66

CSIRO3.0 0.25 0.32

CSIRO3.5 0.60 0.21
GFDL CM2.0 0.20 0.13

GFDL CM2.1 0.29 0.11

GISS-AOM 0.03 0.13

GISS-EH 0.04 0.12

GISS-ER 0.09 0.25

IAP FGOALS-g1.0 0.36 0.61

INGV ECHAM4 0.17 0.45
INM-CM3.0 0.22 0.06

IPSL CM4 0.35 0.18

MIROC(hires) 0.44 0.34

MIROC(medres) 0.41 0.16

MIUBECHOG 0.22 0.27

MPI ECHAM5 0.30 0.18

MRI CGCM2.3.2 0.38 0.57

NCAR CCSM3.0 0.11 0.21

NCAR PCM1 0.30 0.20

UKMO HadCM3 0.37 0.69

UKMO HadGEM1 0.29 0.14

Ensemble mean 0.25 0.28

Observations 0.56 0.17
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(Fig. 5a) and the tropical Pacific regression analysis

(Fig. 10a). Reasons for this different AL representa-

tion remain unclear and may be related to mechanisms

associated with the atmospheric bridge, including the

distribution of tropical convection in the models, which

influences the generation of atmospheric waves that

impacts extratropical North Pacific storm tracks.

The relationship between North Pacific variability and

the second mode of tropical Pacific SSTa is also not

represented well in the coupled models (Figs. 10c and

10d). The North Pacific SLPa pattern associated with

EOF-2tropics-SST, in particular, lacks an NPO-like dipole

(Fig. 10c). The SSTa regression pattern indicates a

‘‘warm-pool warming’’ (Fig. 10d), which is a common

issue in select coupled climate models (e.g., Kug et al.

2010). Recent work by Yeh et al. (2009) notes that

several of the climate models used in this study forecast

significant increases in the frequency of the warm-pool

warming El Niño episodes in the SRES A1B scenario.

Because of the growing importance of this flavor of

ENSO and the inability of the models to capture its re-

lationship with the North Pacific, future work should

concentrate on what effects CPW-type ENSO events

have dynamically on the midlatitude circulation in

observation-based analyses and model experiments.

Another avenue of future research is the role of the

NPO in global climate variability. The NPO emerges in

both cEOF-2SLP (Fig. 4c) and the regression analysis

with the EC-2tropics-SST index (Fig. 9c). Its forcing on the

underlying ocean, the connection with the CPW phe-

nomenon, and with its downstream atmospheric tele-

connections suggest that the NPO is important on

intraseasonal, interannual, and even on decadal time

scales (Di Lorenzo et al. 2010). Recent revival of the

NPO in the climate literature in relation to extratropical

weather patterns (Linkin and Nigam 2008) and the po-

tential initiation of ENSO events (Vimont et al. 2001,

2003) motivates a focus on potential mechanisms asso-

ciated with the NPO that can be used to improve its

representation in climate models.

This study does not offer definitive evidence of what

changes are expected in North Pacific climate variabil-

ity. The lack of consensus mirrors parallel findings in

changes in ENSO behavior conducted by van Oldenborgh

et al. (2005), Guilyardi (2006), and Merryfield (2006),

for example. Yet, we have identified significant issues

with temporal and spatial characteristics of the leading

modes of North Pacific variability that most certainly

impact global climate change predictions. Even though

certain models may appear to perform better than

others among the various analyses, the best approach to

rectifying future climate change issues likely resides

with using multimember ensembles (Reifen and Toumi

2009) for enhancement of the model performance and

for predictions.
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