
3.4	
   PROCESS	
  AND	
  TECHNOLOGIES	
  FOR	
  THE	
  TRANSITION	
  OF	
  RESEARCH	
  	
  
ALGORITHMS	
  TO	
  OPERATIONS	
  FOR	
  REAL-­‐TIME	
  SATELLITE	
  

PROCESSING	
  
 
Alex Werbos*, Erik Steinfelt, Jordan Bentley, Edward Kennelly, David Hogan, Hilary Snell and T Scott Zaccheo 

Atmospheric and Environmental Research, Inc., Lexington, Massachusetts 

 
 

 

1. BACKGROUND 
The effective transition of the latest scientific 
research to operations in the weather and remote 
sensing community has long been recognized as 
a challenge (Serafin, 2002).   In the traditional 
process for operational ground processing system 
development, a custom infrastructure is 
developed for each new mission or sensor. In 
order to operate within this new infrastructure, 
scientific algorithm software will need to be 
engineered to meet the required interfaces. As 
part of this process, two design factors will drive 
the larger goals of minimizing development cost: 
the capability for updates to operationalized 
algorithm software to be easily and accurately 
tested in a development environment, and the 
ability of that software to fully-utilize the 
processing resources of the operational 
environment. 
Over the timeline of system development, 
deployment, and operations, it is to be expected 
that updates to the algorithm software, driven 
both by science and engineering concerns, will be 
required. If these updates must be staged and 
tested within a copy of the operational 
environment, the time and resources required for 
each update will be substantially increased. If a 
lightweight development environment is used, 
individual domain experts and software engineers 
will be able to quickly test algorithm updates and 
verify the correctness of their outputs. In order to 
ensure the integrity of these tests, the 
development environment must be capable of 
using the latest version of the operational 

software. Otherwise, the interactions between the 
operational differences and the development 
updates may generate errors not observed in the 
development environment. Therefore, we must 
evaluate the operationalization process with an 
eye toward “round trip” algorithm code migration 
between the final deployed infrastructure and 
individual workstation tests. 
Every operational system is subject to certain 
constraints on processing latency and available 
computational resources. In order to meet these 
demands, the scientific algorithms must 
effectively-utilize infrastructure resources. This 
requires algorithms to effectively scale to the 
available number of processing cores, and avoid 
unnecessary inefficiencies in I/O. In modern 
cluster-processing systems, this will typically 
require algorithms to not only be capable of 
parallel processing, but to split that processing 
across multiple computational nodes. To keep 
network load manageable, the algorithms 
There are two approaches that are typically taken 
to transition the algorithms from research to 
operations: algorithm software can either be 
adapted from existing sources, or be implemented 
from scratch. While either of these approaches 
can produce effective ground systems, both can 
introduce significant overheads and risks. 
When taking the approach to re-engineer existing 
software for the new platform, developers may 
choose to either directly modify the existing code 
to meet the necessary interfaces, or develop an 
adapter that links the operational infrastructure to 
the science algorithm. These approaches have 
the advantage of relatively low up-front cost; 
leveraging existing code for algorithm processing 
reduces the amount of development. However, 
maintaining this low investment will require 
leaving the core algorithm logic unchanged. This 
may result in an algorithm that is not optimized for 
the operational environment, increasing the risk of 
latency issues and additional hardware cost. In 

_____________________________________ 
* Corresponding author address: Alexander 
Werbos, Atmospheric and Environmental 
Research, Inc., Lexington, MA; email: 
awerbos@aer.com 



the case where an algorithm wrapper is written, 
this problem may be compounded by forcing 
multiple translations of data objects on read and 
write to shift between infrastructure and algorithm 
formats. If the algorithm code is updated, this 
problem may be mitigated, but a separate 
software baseline must be created for the 
operational code, breaking the link with the 
existing scientific algorithm. This may make it 
difficult to integrate changes from developers 
working in a different environment. 
In the case where algorithm software is rewritten 
from scratch, a substantial up-front investment is 
required, but the resulting software can be written 
to be effectively executed within the new 
infrastructure. Nevertheless, there is still the need 
for a separate operational software baseline that 
may differ from that used in scientific 
development. If the software becomes bound too 
tightly to the operational infrastructure, it may be 
very difficult for the new codebase to be 
effectively updated by users working in a different 
environment, which will limit the avenues by 
which these updates can be made, and increase 
their cost. 
When we consider these three typical approaches 
to transitioning research algorithms to operations 
(Figure 1), we see that while each of them are 
capable of producing an effective system, they 
also involve tradeoffs. Up-front development, 
maintainability, and hardware requirements must 
be kept in careful balance to ensure project 
success, and stakeholders must be aware of the 
way the compromises will manifest in the resulting 
operational platform. 

2. SYSTEM ARCHITECTURE 
In this work, we present a system architecture 
where specially-designed scientific algorithms are 
developed as encapsulated components that can 
be easily be operated both in different software 
environments and well as across multiple 
missions with different sensor and performance 
characteristics. This approach reduces the risk 
and overhead that are present during the typical 
ground processing system development process. 
We propose a system where algorithms exist as a 
single software package, written to interfaces that 
are implemented for execution both within test 
and operational environments. Each of these 
algorithms is designed to isolate and abstract 
platform-specific factors, such as sensor 
characteristics and process block size. These 
algorithms are augmented with programmatically-
accessible information describing their inputs and 

outputs, allowing general-purpose software to 
analyze, manipulate, and display algorithms and 
data without additional manual intervention. 

 
By ensuring that algorithm code is implemented to 
use general-purpose interfaces, and that the 
associated algorithm science can be driven by 
inputs from a variety of platforms, we are able to 
put forward the notion of an algorithm library. 
Algorithms, once developed to these frameworks, 
can be easily migrated not just between different 
environments within a single project, but across 
multiple missions (Figure 2). These algorithms 
can be viewed as selectable components, where 
the process of building a ground system is 
principally one of assembling and configuring the 
necessary off-the-shelf algorithm code. In so 
doing, new missions are able to leverage the 
considerable investment of prior development, not 
just in initial investment, but in years of cumulative 
bug-fixes and improvements as well. 
Using the programmatically-accessible metadata 
concerning algorithms and their outputs, this 
concept can be further extended to supporting 
tools and applications. It is possible to write tools 
that ingest the documentation provided about 
algorithm data and their formats, and then 

 
Figure 1. Three traditional research to 
operations transition paradigms 



automatically translate them to the desired final 
outputs. Document generation tools can analyze 
the algorithm system configuration and produce 
standardized materials required for the 
development and delivery process. Together with 
the standardized algorithm components, these 
reusable tools allow users to benefit from the 
maturity and stability of software that has been 
tested and improved through multiple software 
lifecycles, reducing time and cost both for initial 
system implementation, as well as throughout the 
maintenance and operations cycle. This concept 
is illustrated in Figure 3. 

 

3. SOFTWARE IMPLEMENTATION 
Each of the concepts that we have introduced in 
this system have been implemented, in some 
form, over the course of multiple projects. Here 
we discuss how the general principles of 
algorithm encapsulation and programmatically-

accessible data traits have been manifested in 
concrete software packages. 
In our architecture, algorithm encapsulation is 
provided by the use of well-defined interfaces for 
all algorithm interactions with the processing 
infrastructure. The two interfaces by which this is 
accomplished are the Algorithm Execution 
Interface, and the Data Model Interface (DMI). In 
the Algorithm Execution Interface, each algorithm 
is developed to operate on a generalized 
execution area known as a “context”. A context 
contains a unique specification of the data the 
algorithm should generate. For most image 
processing algorithms, this will be a timestamp 
identifying the image to be processed, and a 
range of pixels that define the block within that 
image. By making this execution area a 
parameter given to the algorithm at run-time, the 
infrastructure is free to divide algorithm 
executions across multiple blocks and processing 
hosts. This balancing can even be dynamic, in 
cases where processing load is anticipated to 
fluctuate.  
The DMI is the software interface used for all 
algorithm input and output from the mission’s 
infrastructure. As part of its execution, a scientific 
algorithm will read all parameters and inputs from 
the DMI. When the algorithm has completed its 
execution, all outputs will similarly be passed to 
the DMI for persistence in the infrastructure. The 
exact datasets and areas queried and written will 
depend on the context passed to the algorithm. 
As long as the underlying infrastructure provides 
an implementation of the DMI, the algorithms can 
be moved from one environment to another 
without requiring any changes to their input and 
output code. Implementations of the DMI have 
been developed both for file-based workstation 
testing operations, as well as high-performance 
clustered systems designed for operational 
processing, and algorithms have been 

 
Figure 2. Software architecture concept for 
multi-mission algorithm support 

 
Figure 3. Software architecture concept for library of reusable algorithms and tools 



successfully transitioned back and forth between 
them. 
In order to ensure the capability for seamless 
algorithm transitions, most algorithm 
implementations are designed to be stateless, 
and write out all necessary temporary data to the 
DMI. This allows the underlying infrastructure 
maximum freedom in initializing and destroying 
algorithm instances. Instead of needing to keep 
track of which algorithm is assigned to a particular 
processing node, algorithm processing can be 
freely and dynamically divided between nodes, 
without loss of data. 
To provide the capability for programmatic access 
to algorithm and data characteristics, we have 
developed the Algorithm Data Descriptor 
Database (ADDB). This system consists of XML 
description files associated with each software 
component that describe the associated 
algorithms and data types. These files are 
processed by the ADDB library into a database of 
metadata accessible to client programs through 
an API. Each XML file associated with a particular 
component can be loaded as an individual 
fragment; there is no requirement for a centralized 
manifest file. Instead, any references to external 
data types or objects will remain unresolved until 
a fragment containing those data types is read. 
This allows a great deal of flexibility in distribution, 
as a fully-functioning ADDB can be fully 
constructed from any given subset of 
components; users are not required to import and 
operate with the complete library of available 
algorithms and tools. 
In addition to the descriptions of the immutable 
properties of the algorithm code and associated 
data, the ADDB also provides an API for creating 
system configurations from those algorithms and 
types. These system configurations describe how 
the available algorithms and tools are assembled 

into a particular data processing system. Tools 
developed using the API provided by the ADDB 
can ingest user-required outputs and 
automatically generate a system configuration 
that generates those outputs using the algorithms 
available in the ADDB. Other tools, built to read 
those system configuration ADDB files will be 
able to automatically configure themselves to 
display and analyze the outputs of the system. 
Using both layers of ADDB system, users will be 
able to easily assemble effective processing 
systems, and explore the operation of those 
systems. 

4. SCIENCE ARCHITECTURE 
Figure 4 illustrates a typical evolutionary process 
where science algorithms evolve in parallel but 
separately from the science basis/ research 
algorithms.  This process leads to a number of 
problems. First the transition of a science 
algorithm to the operational environment is 
usually a one way process.  The ability to 
incorporate new science capabilities in hampered 
because of the disparate software environments 
and software baselines between the research and 
operational environments.  Furthermore as new 
systems are developed, algorithm and associated 
research and operational software are typically 
adapted in ways unique to that specific system 
and software infrastructure. The result is 
increasing fragmentation in the science and 
software baseline.  
Often there is a high degree of commonality in the 
science basis for the various systems. An 
approach that abstracts these common features 
and develops configurable algorithm components 
works hand and glove with the software 
architecture described in Figure 3. Such an 
architectural approach, common in the software 
world, is less familiar to science algorithm 
developers. However it has the potential to 

 
Figure 4. Evolution of operational ground processing systems 



significantly improve the overall productivity of the 
process. 

5. CASE STUDIES 
The architecture we present had its core 
developed as part of the GOES-R program, and 
has been developed internally since then. This 
section describes how these efforts have 
implemented the architecture we describe, and 
the effectiveness of the resulting systems. 

5.1 GOES-R 
In the GOES-R project, the scientific algorithms 
were written from scratch for the new system 
based on Algorithm Theoretical Basis Documents 
(ATBDs) that described the algorithm 
functionality. Early on in the process, the decision 
was made to engineer a technical framework that 
would permit the scientific algorithms to be 
executed on meaningful datasets, without 
change, in both the cluster-based operational 
environment, and the development workstations 
used by algorithm developers. It was here that the 
DMI approach and the notion of algorithm 
execution contexts were first adopted. In this 
case, a lightweight infrastructure, based on 
Python and HDF5, was implemented to drive 
algorithms using data of the same size and type 
as would be processed in the final system. 
GOES-R also implemented a structured process 
for migrating the science algorithms as 
documented in the ATBDs to operational software 
featuring tight integration of the science and 
software disciplines throughout the lifecycle 
(Kennelly, 2013). This process was coordinated 
through the creation of an Algorithm Baseline, a 
set of documents that centrally managed all of the 
information regarding algorithms, their 
performance, and the data types they used. This 
function of the Algorithm Baseline is analogous to 
a manually-managed version of the ADDB. By 
maintaining and referencing these materials, the 
process ensured that the science integrity of the 

algorithms was retained at all steps in the 
development.  It employed joint peer reviews 
(science and software teams) during the design 
phase and thorough testing through the code and 
unit test (CUT) and integration and test (I&T) 
phases with strict acceptance criteria.  The testing 
encompassed both the science integrity including 
product accuracy and software quality/ 
performance. 
The validity of these approaches has been borne 
out by the success of the GOES-R development 
process (Kalluri, 2014). Much of this success can 
be attributed to the ease with which distributed, 
specialized teams have been able to address 
their issues within a minimal environment, while 
relying on the interface covenants with other 
components to ensure that the tested updates will 
perform correctly in all situations.  

6. MULTI-MISSION ALGORITHMS 
We have recently been working to extend GOES-
R algorithms, originally designed to operate in 
geosynchronous orbits with the Advanced 
Baseline Imager instrument to also function in a 
Highly Elliptical Orbit being considered for 
upcoming missions (Garand, 2009).  We 
developed the multi-mission (interoperable) 
algorithm as configurable components that fit 
within the overall software architecture described 
in this work. These results were reported 
separately (Hogan, 2014).  We recognize that 
there will be cases were system/ instrument 
differences will be too great and that separate 
developments paths may be required. We 
anticipate that this will occur less often than may 
be thought and that a discipline that seeks to 
exploit commonality in the development of 
configurable algorithm components will reap 
many rewards. The multi-mission approach is 
illustrated in Figure 5. 

7. SUMMARY 
We have described an architectural approach to 

 

 
Figure 5. Operational concept for multi-mission algorithm use 



the software and science development of remote 
sensing algorithms. Key features include a 
common data model interface across 
development, test and production environments, 
configurable algorithm components and a multi-
mission approach to the science algorithm 
development. This approach has the potential to 
improve the science to operations process with 
the result of transitioning the latest science 
capabilities faster and with less expense than 
currently. 

8. ACKNOWLEDGEMENTS 
AER wishes to acknowledge the support of the 
Harris Corporation for their support of the multi-
mission algorithm development. 

9. REFERENCES 
Hogan, D., A. Werbos, J. Bentley, E. Kennelly, E. 
Steinfelt, T. S. Zaccheo, and W. Davis, 2014: 
Multi-Mission Remote Sensing Ground 
Processing Algorithms, Tenth Annual Symposium 
on New Generation Operational Environmental 
Satellite Systems (J1.4), 2014 American 
Meteorological Society Annual Meeting, Atlanta, 
GA 
Garand, L. and G. Kroupnik, 2009: The Polar 
Communications and Weather (PCW) mission: a 
Canadian project to observe the Arctic region 
from a highly elliptical orbit. Presentation. 
American Meteorological Society Annual Meeting, 

Phoenix, AZ, Amer. Meteor. Soc., 16SATMET 
1.2, 
https://ams.confex.com/ams/89annual/techprogra
m/paper_145382.htm 
Kalluri, S., R. Kaiser and D Vititoe, 2014: Lessons 
Learned From Implementing Operational 
Algorithms for Product Generation During GOES-
R Ground Segment Development, Research to 
Operations Pathway for Satellite Data Retrieval 
Algorithms (J2.1), 2014 American Meteorological 
Society Annual Meeting, Atlanta, GA 
Kennelly, E., T. S. Zaccheo, C. Botos, E. Steinfelt, 
H. E. Snell, and R. Khanna, 2012: Reproducibility 
of Research Algorithms in GOES-R Operational 
Software. Ninth Annual Symposium on Future 
Operational Environmental Satellite Systems, San 
Francisco, CA 
Schmit, Timothy J., Mathew M. Gunshor, W. Paul 
Menzel, James J. Gurka, Jun Li, A. Scott 
Bachmeier, 2005: Introducing the Next-
Generation Advanced Baseline Imager on GOES-
R. Bull. Amer. Meteor. Soc., 86, 1079–1096. 
Serafin, Robert J., Alexander E. Macdonald, 
Robert L. Gall, 2002: Transition of Weather 
Research to Operations: Opportunities and 
Challenges. Bull. Amer. Meteor. Soc., 83, 377–
392. 
 
 

 
 


