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Abstract 

Current data assimilation (DA) systems use only a small fraction of the thousands of 

channels from hyperspectral infrared sounding instruments, including IASI, AIRS, and 

CrIS. An alternative that retains nearly the full hyperspectral information content at 

greatly reduced computation cost, while filtering instrument noise, is to assimilate the 

optimal spectral sampling (OSS) node radiances. The nodes are a set of optimally-

selected spectral points, the node radiances are monochromatically calculated at the 

nodes using a fast forward model, and the nodes and weights are determined by a training 

procedure that ensures channel radiances can be accurately computed as a weighted sum 

of node radiances. For DA, we calculate the node observed radiances by inverting the 

OSS node-to-channel relationship in a least-squares sense. DA procedures can then be 

applied directly to the node radiances after some practical concerns are mitigated.  The 

node-based approach has a quality-control advantage where emission from low clouds 

may contaminate channel radiances even in the stronger absorption bands because 

channels are wider than absorption lines, while there are uncontaminated monochromatic 

node radiances that have useful sensitivity to atmospheric column temperature and 

humidity closer to the cloud tops. Four preliminary, proof-of-concept global observing 

system experiments were conducted with the NOAA three-dimensional variational data 

assimilation system: a baseline that uses the 150 operational IASI channels; an 

experiment that uses a large portion (5014) of the IASI band 1 and 2 channels; and two 

experiments that assimilated 256 IASI-OSS node radiances with different specifications 

of observational errors. One of those two node-based experiments performed better than 

the other experiments for most metrics of forecast skill. The results of these preliminary 
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experiments are encouraging: the node-based approach provided positive impacts on the 

forecast for some metrics, regions, and lead times, despite the fact that there are aspects 

of the node-based processing that have not yet been optimized.   
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1. Introduction 

Current hyperspectral infrared sounders have thousands of channels. The number of 

channels for such sensors is much higher than the potential degrees of freedom: i.e., the 

number of independent elements of information, in profiles of temperature, water vapor, 

and trace gases. The redundancy can, however, reduce the effect of instrument noise for 

the channel set as a whole. Variational data assimilation methods are capable of 

extracting the information content while simultaneously exploiting the noise reduction. It 

is impractical, however, to assimilate data from full channel sets due to the high 

computational costs of this approach, which involves both radiative transfer calculations 

and nonlinear minimization. Weather centers commonly reduce the volume of data from 

hyperspectral infrared sensors by presenting only a small fraction of the channels to the 

data assimilation system. Several methods of channel selection have been proposed (e.g., 

Collard 2007, and see further discussion in Sec. 3d). Typically, such methods attempt to 

retain information that is valuable for the forecast and eliminate channels that cannot be 

well modeled and hence cannot be properly assimilated. Inherently, however, there is 

some loss of profile information and the noise suppression effect of channel redundancy 

is lost. For example, at the National Centers for Environmental Prediction (NCEP), the 

Global Data Assimilation System (GDAS) operationally assimilates less than 2% of the 

channels observed by the hyperspectral Infrared Atmospheric Sounding Interferometer 

(IASI) sensors (Blumstein et al. 2004; Hilton et al. 2012). Weather centers have recently 

been experimenting with principal component (PC) approaches to compression of 

hyperspectral data in assimilation (Collard et al. 2010; Matricardi and McNally 2014; Lu 

and Zhang 2019). Here, we report on the implementation and testing of the use of optimal 
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spectral sampling (OSS) as an alternative to channel selection. This approach is shown to 

achieve a similar computational efficiency as channel selection yet retain the bulk of the 

information content of the full channel set.  

The OSS method (Moncet et al. 2008; 2015) has been demonstrated to be a fast and 

accurate way to model radiometric observations and their Jacobians as linear 

combinations of monochromatic radiative transfer calculations (Saunders et al. 2007; 

Calbet et al. 2011). OSS models a set of channel radiances (𝐲) as 

𝐲 = 𝐖𝐲̃, ( 1 ) 

where 𝐲̃ represents the radiances at a set of monochromatic spectral points we call “nodes” 

and 𝐖 is a matrix of weights. OSS radiative transfer computations are thus monochromatic. 

It is useful to view 𝐖 as a projection operator from node space to channel space.1 By 

differentiating 𝐲 = 𝐖𝐲̃, it is clear that Jacobians (𝐊) are projected in the same way:  

𝐊 = 𝐖𝐊̃. ( 2 ) 

The heart of OSS is the optimization process that determines the nodes and weights 

by minimizing the misfit between the OSS radiances and spectrally integrated radiances 

from a reference line-by-line radiative transfer model (LBLRTM; Clough et al. 1992; 

2005) for sets of training profiles that span the range of conditions that occur globally, 

including anomalous conditions. A full description of the OSS training set properties and 

the OSS optimization method is provided by Moncet et al. (2008; 2015). The number of 

                                                

1 A physical interpretation for the weight values is provided in the Appendix of Moncet et al. (2015). 
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nodes required depends on the amount of independent information in the modeled 

channel set, including the number of variable gases modeled, and the required accuracy 

enforced during the optimization. We typically impose an accuracy requirement of 20% 

of the sensor noise standard deviation. For a typical accuracy requirement and modeling 

six variable gases (H2O, CO2, O3, N2O, CO, CH4) only a few hundred OSS nodes are 

needed to compute the entire set of the more than 8000 IASI channels (Moncet et al. 

2015). While it is typical for operational models to include six variable gases (Hocking et 

al. 2015; Chen et al. 2012), as was done in the present study, OSS can be trained to treat 

additional variable gases with a modest increase in the number of nodes (Moncet et al. 

2008; 2015; Worden et al. 2019), such as to accommodate exceptional concentrations of 

SO2 after a volcanic eruption. 

Node-based assimilation operates on nodes (i.e., 𝐲̃ and 𝐊̃) instead of on channels 

(i.e., 𝐲 and 𝐊), avoiding the transformation 𝐊 = 𝐖𝐊̃, which can be computationally 

expensive when there are many channels and many atmospheric state variables: that is, 

when 𝐊 is large in both dimensions. Prior to assimilation, the observations are projected 

from channel space to node space by an inverse projection  

𝐲̃obs = 𝐀𝐲obs, ( 3 ) 

where 𝐀 is determined by least squares:  

𝐀 = (𝐖𝑇𝐑−1𝐖)−1𝐖𝑇𝐑−1, ( 4 ) 
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with observation error covariance 𝐑. This least-squares transformation that produces 𝐲̃obs 

from 𝐲obs acts as a filter, both for sensor noise and for the effects of atmospheric 

constituents (e.g., trace gases) not included in the OSS training2. 

Assimilation in node space is mathematically equivalent to assimilation in channel 

space (as shown in APPENDIX A) if the observation error covariance in node space is 

defined as  

𝐑̃ = (𝐖𝑇𝐑−1𝐖)−1 ( 5 ) 

and the R used in the variational cost function of the data assimilation (DA) system is the 

same as the R used in (4). With practical applications, however, the R used in the DA 

includes additional error terms (Sec. 3e). The existence of the inverse of 𝐖𝑇𝐑−1𝐖 is 

addressed in Appendix A. With this definition, 𝐑̃ will have non-zero off-diagonal terms 

even if 𝐑 is diagonal, which is a potential disadvantage of node-based assimilation, since 

DA systems have often assumed that 𝐑 is diagonal; however, this assumption has been 

dropped in more modern DA systems and non-diagonal 𝐑̃ is then no longer a 

disadvantage. 

In our experiments, apodised IASI channel radiances were used and the nodes have 

been derived to best fit those apodised channel radiances, but an important motivation for 

                                                

2 Similarly, principal-component representations of radiances (Liu et al., 2006) apply filtering by 

retaining only a limited number of principal components: that is, by limiting to the number of independent 

pieces of information about the state of the atmosphere and surface one can extract from the spectral 

observations. 
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this work is the node-based method’s suitability for assimilation of unapodised 

interferometric spectra from sensors such as IASI and the Cross-track Infrared Sounder 

(CrIS). In principle, assimilation of unapodised data will avoid the loss of spectral 

resolution and associated degrees of freedom (vertical profiling resolution) associated 

with apodisation. Projecting observations onto node space is the only currently known 

way to assimilate unapodised radiances while preserving the ability to filter out parts of 

the spectral observations corrupted by sources of atmospheric/surface variability not 

explicitly handled by forecast models or not well handled by radiative transfer models, 

without having to discard entire sets of observations. In particular, the monochromaticity 

of OSS nodes circumvents the spectral blending inherent in unapodised channel radiances 

(which have extensive side-lobes) and in principal-component (PC) representations of 

radiances (Liu et al. 2006; Collard et al. 2010; Matricardi and McNally 2014). Spectral 

blending refers to the fact that spectral signatures of any unmodeled (or poorly modeled) 

atmospheric components, such as trace gases or clouds, impact all PCs, making it 

impossible to isolate elements of a set of observations that are free of such impacts. In 

some DA applications it may be critical to avoiding spectral blending. Moncet et al. 

(2015; Sec. 5) covered the application of OSS to PCs and discussed other aspects of the 

relationship between PCRTM (Liu et al. 2006) and OSS. 

2. Experimental design 

We implemented a node-based method in the NCEP Gridpoint Statistical 

Interpolation (GSI) assimilation system in order to conduct experiments and analyze the 

performance of the node-based assimilation. For this demonstration, the node-based 
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version of GDAS was designed to be as consistent as possible with the original baseline 

version. In this work the (non-hybrid) three-dimensional variational (3D-Var) GDAS, 

rather than the newer hybrid four-dimensional ensemble variational (4DEnVar) GDAS 

(Kleist and Ide 2015a,b) was used to allow sufficient throughput with the available S4 

computer system (Boukabara et al. 2016). In particular, we used GSI release 5.0.0, along 

with version 2.2.0 of the Community Radiative Transfer Model (CRTM), which has an 

option to use the OSS method for radiative transfer calculations, which we refer to as 

CRTM-OSS. 

The CRTM-OSS software (as with other OSS forward model implementations) has a 

flexible design with respect to selections of nodes and weights. The only node-related 

information that must be supplied consists of: 1) a file containing monochromatic 

absorption coefficients for each relevant node, along with node-identifying information, 

and 2) a sensor-specific file containing weights assigned to each node for each channel 

the node is used to reconstruct, with indices to the node-specific absorption data in the 

other file. A single absorption file can be applied to more than one instrument and can 

cover a broad spectral interval. There are no limits on the extent of the spectral domain 

covered by OSS, provided that CRTM handles the Planck function, cloud, and surface 

property computations over that full domain.  

The test case for our experiments was the two-month period June-July 2015. To 

facilitate implementation and interpretation, the baseline configuration assimilates only 

IASI brightness temperature and conventional observations, which include all 

scatterometer and cloud track winds as well as all various non-satellite observations that 

are used operationally. No other brightness temperature or global positioning system 
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radio occultation (GPS-RO) observations were included in the baseline. The motivation 

for this experimental design choice is that in research studies like this one, the control 

experiment is simplified to highlight the value of the new observations or method while 

making use of a limited sample. 

We ran a series of experiments to test the impacts of expanding the use of IASI data 

from the operational set of selected channels (experiment: Baseline) to the full 

information content of IASI bands 1 and 2 in terms of channel (experiment: Full) and 

OSS node brightness temperatures (Table 1). When using OSS nodes, we tested two 

methods for representing the observation error (experiments: Node1 and Node2). A 7-day 

forecast was initiated once per day over the two-month experimental period. For analysis 

of results, we excluded the first two weeks, to ensure complete spin-up of the adaptive 

variational bias correction (VarBC, Zhu et al. 2014). The forecast error metrics are based 

on comparing each forecast to the subsequent analysis of that forecast’s experiment that 

has the same valid time.  

This experimental design reflects the fact that this is a proof-of-concept study, 

applying limited resources to stand up a node-based assimilation system and demonstrate 

its feasibility and see whether the preliminary performance assessments indicate that 

iterations of improvement to the system and its validation are warranted. 

3. Practical aspects 

a. Overview 

To prepare for node-based experiments, there were several practical aspects of the 

GSI and associated data processing that were addressed as described in the following 
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subsections. Aside from these revisions, the GSI treats OSS node observations exactly as 

it treats channel observations. For example, the VarBC and the quality control (QC) 

processes operate without regard to whether the brightness temperatures are channel or 

node brightness temperatures.  

 Operationally, the 150-channel Baseline configuration includes channels from IASI 

bands 1 and 2, but not from band 3. OSS models the total 5420 IASI band 1 and band 2 

channel set using only 404 nodes, based on an OSS training that had six variable gases 

(H2O, CO2, O3, N2O, CO, CH4) and fit the reference model within 20% of channel noise 

(rms). 

b. Applying CRTM-OSS to GSI 

Our experiments required using CRTM-OSS as an alternative to the standard CRTM 

applied in GSI (hereafter CRTM-ODPS), which models channel radiances using a 

method called optical depth in pressure space (Chen et al. 2012). To prepare CRTM-OSS 

to replace CRTM-ODPS in the GSI, CRTM-OSS was modified as follows. First, the 

interface was revised to match the GSI identification and units of the variable gases, and 

to match the GSI use of brightness temperature instead of radiance. Second, an option 

was added to CRTM-OSS to provide 𝐲̃ and 𝐊̃ as outputs rather than handling them only 

as intermediate results in the computation of channel-space y and K. Third, since the GSI 

data QC process for IASI requires the layer optical depth, emissivity, and emissivity 

Jacobians, these quantities were also added as outputs. 

For layer optical depths for nodes, revisions to CRTM-OSS merely took the optical 

depths that were treated as intermediate data and made them available as outputs. For 
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layer optical depths for channels, CRTM-OSS was revised so cumulative node 

transmittances (between each level and the top of the atmosphere) are projected to 

cumulative channel transmittances (similar to projection of radiances and Jacobians; Sec. 

1). Then the channel layer optical depths are obtained as the logarithm of the ratio of the 

cumulative channel transmittances at the top and bottom of each layer. This method 

sometimes results in slightly negative channel layer optical depths because some OSS 

weights are negative and the accuracy of the OSS approximation is assured for radiances 

but not necessarily for layers that contribute little to the radiances. Any instances of 

negative channel layer optical depth are reset to zero. 

For nodes, the inverse Planck function is used to transform radiances to brightness 

temperature. For channels, as an approximation, this transformation is applied to the 

channel center wavenumber. 

c. IASI data preparation 

The IASI data stream available at NCEP contains only 616 of the 8461 IASI 

channels. To get access to the full channel set, we obtained IASI L1c data from the 

Comprehensive Large Array-data Stewardship System (CLASS) and converted the data 

into Binary Universal Form for the Representation (BUFR) files. 

In an off-line process, we projected IASI band 1 and 2 observations onto OSS nodes 

using (3) and (4). In this conversion, R is a diagonal matrix of the IASI measurement 

error variances (D. Tobin, personal communication). This version of R (𝐑𝑚 hereafter) 

represents an assumption that the correlations of errors in the measurement system are 

negligible. The subscript m is used here to denote that 𝐑𝑚 represents measurement error 



13 

 

only, and does not represent other errors that are commonly included in estimates of 

radiometric observation error for assimilation. The monochromatic node radiances were 

converted to brightness temperatures using the inverse Planck function before writing the 

data to BUFR files. The measurement error covariance of the node radiances, 𝐑̃𝑚, was 

computed by applying the OSS weights (5) to 𝐑𝑚. The transformation of measurements 

from channels to OSS nodes introduced sparse but significant correlations (Fig. 1). To 

obtain the covariance in brightness temperature units we applied the linear approximation 

𝐃𝐑̃𝑚𝐃, where D is a diagonal matrix of the derivative of the inverse Planck function at 

the nodes. 

d. Static filtering 

The baseline GSI assimilates 150 IASI channels. There are several criteria by which 

the IASI channel set was reduced to 150, the first of which is semi-subjective analysis 

based on information content (Collard 2007; Gambacorta and Barnet 2013). Additional 

subjective processes have been applied at NCEP, toward eliminating channels in parts of 

the spectrum where radiative transfer models perform relatively poorly (e.g., strong non-

LTE effects) and channels where the radiative transfer is strongly nonlinear (including 

some water vapor channels) that have been found to interfere with convergence of the 

process that minimizes the variational cost function (J. Jung, personal communication). 

One mechanism to detect problem channels is the analysis of observation-minus-

background (O−B) statistics.  

To account for these practical considerations while still allowing experiments with 

node data and with a “full” IASI channel set, we first eliminated IASI band 3, thereby 



14 

 

avoiding non-LTE effects, and mimicking operational practice. We then eliminated 

channels and nodes for which the rms O−B was exceptionally high in relation to nearby 

channels. As a computationally economical way to obtain these O−B statistics, we 

configured our Baseline experiment to carry the full channel set and node data through 

the QC stage of processing, using the GSI mechanism for channels that are monitored but 

not assimilated. This filtering process, which is discussed in more detail in APPENDIX 

B, resulted in 5,014 channels and 265 nodes retained for assimilation. A shortcoming of 

this method is that it does not address the nonlinearity issue noted above. In future work, 

it may be feasible to include a nonlinearity criterion. 

e. Observation error estimation 

For brightness temperature assimilation in GSI, the prior estimate of observation 

error (PEOE) in each IASI channel represents a combination of measurement error, 

radiative transfer modeling error, and representativeness error. In the operational GSI, 

PEOEs are tabulated for 150 assimilated IASI channels and 315 monitored IASI channels 

(465 channels in total) in IASI bands 1 and 2. During QC, estimated observation errors 

(EOEs) at each field of view (FOV) are derived from the PEOEs. To complete the 

observation error estimation, GSI assumes inter-channel correlations are zero. To 

facilitate comparing our node-based results to the current GSI baseline, we retained this 

assumption in our experiments, while recognizing that inter-channel observation 

correlations for radiances, especially from hyperspectral sensors like IASI, should be 

included (Bormann et al. 2016; Campbell et al. 2017). 
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For our experiments, PEOEs were needed for the full channel set and for OSS node 

data. Considering that the PEOE data were produced through a partly subjective process 

(J. Jung, pers. comm.) that could not be simply replicated for the full channel set or for 

nodes, we used the operational PEOEs available for 465 channels to develop a linear 

regression prediction of the PEOE for a channel from the spatial pattern of radiance for 

that channel. We found that the spatial pattern could be adequately represented by the 

first 13 principal components (PCs) of the brightness temperature “maps” for one day 

(i.e., using PCs as predictors). Here, the PC transformation is based on the global spatial, 

location-to-location covariance matrix constructed from 465 channel brightness 

temperatures at all 6658 IASI FOVs for the chosen day. The regression equation was then 

applied to all channels and nodes for IASI bands 1 and 2. This approach essentially 

extrapolates PEOEs from the 465 channels, using spatial variation of a channel’s 

brightness temperature as a proxy for the channel’s radiometric response to varying 

atmospheric temperature and water vapor. Details of the PEOE extrapolation are given in 

APPENDIX C. 

The error variance estimate for each specific measurement is adaptively calculated in 

the QC component of the GSI. The EOEs are initially set to the PEOE values. Then, at 

each step during QC, the EOE for a FOV may be multiplied by an inflation factor. At the 

end of the QC process, the squared EOE vector is taken to be the diagonal error variance 

matrix, denoted as 𝐕 in the case of channels and 𝐕̃ in the case of nodes. When channel 

brightness temperatures are assimilated in the GSI, the observation error covariance 

matrix R that is incorporated in the variational cost function is defined as 𝐑 = 𝐕, thus 
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including estimates of the measurement error, radiative transfer modeling error, and 

representativeness error. 

When node brightness temperatures are assimilated, the observation error covariance 

in the variational cost function is 𝐑̃. If we were to define this as  𝐑̃ = 𝐑̃𝑚, then the 

assimilation would neglect the adaptive estimates of modeling error and 

representativeness error. If, instead, we were to use 𝐑̃ = 𝐕̃ (directly analogous to 𝐑 = 𝐕 

for channel assimilation), then the correlations associated with the channel-to-node 

transformation (Eq. 5) would be neglected. We tested two compromise options for 

specifying 𝐑̃ while using the 𝐕̃ that GSI produces when operating on nodes. In 

experiment Node1, 𝐑̃𝑚 is scaled to obtain a matrix with the same diagonal as 𝐕̃ and the 

same correlation as 𝐑̃𝑚: 𝐑̃ = (𝐕̃)
1

2𝐂̃𝑚(𝐕̃)
1

2, where the correlation, 𝐂̃𝑚 =

diag(𝐑̃𝑚)
−
1

2𝐑̃𝑚diag(𝐑̃𝑚)
−
1

2, is unaffected by conversion from radiance to brightness 

temperature (with the linearized conversion; Sec. 3c). In experiment Node2, 𝐑̃ is equal to 

𝐑̃𝑚 , except that the diagonal is set equal to the diagonal of 𝐕̃. Note that in either case, the 

mathematical equivalence between channel-based and node-based assimilation is 

compromised by the fact that the version of R used in (4) and in the definition of the GSI 

cost function are inherently different, because the product of (4) is used to compute an 

input to QC (namely 𝐲̃obs) and the 𝐑̃ used in the cost function is an output of QC. Even if 

they were otherwise the consistent, the QC adjustments to R are inevitably different for 

channel-based and node-based assimilation.  
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f. Dynamic filtering 

The QC module of the GSI operates as a dynamic filter to eliminate observations 

(individual channels or all channels in a FOV) and to adjust the estimated observation 

error variance (V or 𝐕̃) to account for factors that may affect RTM error. Factors by 

which channels are excluded or down-weighted for IASI include: 

 IASI quality flags or consistency checks indicate unreliable data; 

 high cloud fraction (per products from Advanced Very-High-Resolution 

Radiometer data); 

 indicators of cloud impact on a per-channel basis; 

 solar component of radiance is high; 

 sensitivity to surface; 

 sensitivity above top of the model; and 

 high O−B difference.  

These factors are applied to nodes in the same way as they are applied to channels, 

after accounting for practical issues discussed in Sec. 3b.  

The test for high O−B difference compares the O−B to a channel-specific “gross 

check” threshold. For the operational GSI, those thresholds are provided in tabulated 

form along with the PEOE values for the same 465 channels. We inspected the 

relationship between the thresholds and the PEOE values for those channels and found 

that for channels > 750 cm−1 almost all thresholds were 6 K and for channels < 750 cm−1 

the thresholds could be fairly well approximated by multiplying the PEOE values by 3 

and capping the thresholds at 6 K. Thus, thresholds for the full channel set and for OSS 
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nodes were set to 6 K for channels > 750 cm−1 and the minimum of 6 K and 3 times the 

PEOE value otherwise. 

We assessed the yields of data passing QC, and found that the yields were generally 

very consistent among the four experiments (Fig. 2). For some nodes, however, the yields 

were higher than those for channels at nearby spectral locations, and Sec. 4a explains 

how responses to cloud cover contribute to those differences in yields. Instances of nodes 

with anomalously low yields were attributed to the test for high O−B difference, and 

occurred with nodes having relatively low weights (and, hence, high noise) that were 

flagged by the static filtering process (Sec. 3d) to be excluded from assimilation.  

g. Matrix inversion 

The cost function minimization algorithm of the GSI requires the inverse of the 

observation error covariance matrix. For channel-based assimilation, this matrix is 

diagonal and inversion is computationally trivial. For node-based assimilation, a full 

matrix inversion step was invoked. To facilitate the ultimate transition of node-based 

assimilation into operations, we used the same matrix inversion software as is used by 

Bathmann et al. (2017) in their ongoing work at NCEP to adapt GSI to use non-diagonal 

observation error covariances. 

4. Results and analysis 

a. Sounding above clouds 

With respect to making use of measurements above opaque clouds, we had found 

through prior 1D-Var experiments (Moncet et al. 2016) that node-based retrieval was 
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more robust than channel-based retrieval, because weighting functions (Jacobians) are 

more sharply peaked for monochromatic nodes than for channels. There are thus 

instances where upper-tropospheric information is available from nodes uncontaminated 

by low-level clouds while there are no such uncontaminated channels. We found that 

such circumstances occurred within our assimilation experiments. For example, Fig. 3 

shows an instance where a node has peak temperature sensitivity near 520 mb and 

virtually no sensitivity below the 760-mb level, while the spectrally nearby channels with 

similar peak pressures have significant sensitivity down to almost 1000 mb. Fig. 4 shows 

many locations where the QC process filtered out these channels over low clouds while 

the QC passed (accepted) the node data for use in assimilation. 

b. Forecast accuracy 

The mean die-off curves for 500-hPa geopotential height anomaly correlations (AC) 

are similar for each of the four experiments (Fig. 5a), but the individual curves vary 

substantially as forecast time increases. The forecast impacts of alternatives to the 

Baseline are more significant at short forecast times, as is expected for data impact 

experiments, and this trend is more apparent in relative differences (Fig. 5c) than in 

absolute differences (Fig. 5b). The AC difference plots indicate significant improvements 

for Node1 at 24 h, for Node 2 at 120 and 144 h, marginal improvements for Node1 at 48 

h and Node2 at 24 h, significant degradations for Full out to 48 h, and a marginal 

degradation for Full at 72 h.  

In these figures, forecast impact Δ is defined as zc – ze, where zc is the error metric 

for the control experiment (here, Baseline), and ze is the error metric for the test 
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experiment (here, Node1, Node2, or Full). With this definition, forecast impact is positive 

for improvements and negative for degradations relative to the control experiment. The 

relative forecast impact δ is simply Δ (and its confidence intervals) divided by the sample 

mean of zc. Since AC (Fig. 5) is a skill metric, we plot Δ and δ for ACE=1-AC. In the 

confidence results presented in Fig. 5 and following figures, no adjustment was made for 

the possibility of correlated errors. 

The impact on 500-hPa geopotential height ACE forecasts is just one of many 

metrics that we examined. For a few key metrics, Fig. 6 has the δ-impact values and (in 

parentheses and color coded) the Student’s t-statistic quantile (in %) for the impacts. In 

general, compared to Baseline, we see that impact of Node1 is positive, Node2 is neutral, 

and Full is negative. However, there is some variability among the relative performances 

of Baseline, Node1, and Node2. For example, Node2 performed best with respect to 

northern hemisphere AC in 4-day to 6-day forecasts, while Node1 performed best with 

respect to relative humidity. 

To get a broad view of performance, we prepared summary assessment metrics (SAMs) 

following the approach of Hoffman et al. (2017; 2018). SAMs are averages of normalized 

assessment metrics. The normalization is via the empirical cumulative density function, 

which is determined for each category from the subset of all experiments and all 

verification times. The categories are all possible combinations of coordinates in five 

dimensions, as listed in Table 2. In practice, the normalization for all values z in a sample 

Z is given by the rank of z in Z minus ½, all divided by the size of Z. Here z can be ACs 

or other skill scores or inverted RMSEs or other error metrics. Following the usual NCEP 

practice, ACs are calculated only for some combinations of level and variable. As a 
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result, the ACs are not calculated for RH (all levels), for 850 hPa height, and for 700 and 

1000 hPa temperature and wind. 

Fig. 7 shows the overall (global) SAM by experiment and the evolution of SAM as a 

function of forecast time. Overall, Node1 gives the best performance, followed by 

Baseline and Node2, which are approximately equivalent. Full performs much worse. 

The differences between experiments are greatest at the start of the forecast and decay 

thereafter. Fig. 8 shows how SAMs vary with level, domain, variable, and statistic. By 

level, Node1 is best at all levels. By domain, Node1 is best in the NHX and Tropics, but 

Baseline is best in the SHX. By variable, Node1 is best, but Baseline is equivalent to 

Node1 for RH. By statistic, Node1 is best for both AC and RMSE. Node2 performs better 

for AC than RMSE and the reverse holds for Baseline. 

The finding that the assimilation with the “full” channel set (5,014 channels) 

performed worst (i.e., lowest ACs and highest errors) is likely due, in large part, to the 

assumption that the observation errors for channels are uncorrelated. This would have the 

effect of substantially overweighting the radiance observations compared to the other 

experiments. For example, Campbell et al. (2017) found that there were significant 

differences in forecast error (up to about 3%) depending on whether correlations were 

taken into account while assimilating 73 channels from IASI and 17 channels from the 

Advanced Technology Microwave Sounder (ATMS). Similarly, Bormann et al. (2016) 

reported substantial benefits of accounting for correlations, by various metrics, while 

assimilating data from 191 IASI channels. We would expect the impact of correlations to 

be much higher with 5,014 channels. There is currently an effort underway at NCEP to 

implement a capability to account for observation error correlations (Bathmann et al. 
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2017), as has been done at other forecast centers. The “full” channel set performance 

might also be degraded by shortcomings in the static filtering process (Sec. 3d), which 

may be passing channels with relatively high radiative transfer errors or otherwise not 

handled well by the cost function minimization process. 

The finding that, for RH, the baseline did relatively well, may relate to a criterion of 

the channel reduction that was imposed on the baseline channel set but not on the node-

based methods: elimination of instances with strongly nonlinear radiative transfer, 

including channels sensitive to water vapor, as mentioned in Sec. 3d. Ultimately, the best 

solution would be to advance the cost function minimization algorithm so that highly 

nonlinear channels or nodes do not degrade convergence. As an interim measure, a 

similar reduction criterion could be applied to nodes.  

With regard to the fact that the baseline performed relatively well in the southern 

hemisphere, interpretation of the performance statistics is not straightforward because of 

a peculiarity of the analysis. In the southern hemisphere, a large majority of the 

assimilated data are from IASI, considering that no other infrared or microwave satellite 

sounder data were included. The forecast performance metrics are based on comparing an 

analysis of IASI data valid at one time with a forecast produced by starting from an 

analysis of IASI data at a prior valid time. In the hypothetical case where the QC applied 

to IASI data causes all channels to be excluded, the analysis step leaves the prior forecast 

unchanged and so forecast–analysis differences are zero. A method of using IASI data 

that introduces more information to the analysis can result in higher forecast–analysis 

differences, particularly if the forecast model has shortcomings that lead to systematic 

errors. In regions where the analysis is constrained by more diverse data sources, such as 
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the northern hemisphere, forecast–analysis differences would generally be more 

indicative of analysis errors and their growth over time. 

A factor in the performance of Baseline relative to Full, Node1 and Node2 was that 

the channel filtering and the PEOE have been optimized (to some degree) for the 150-

channel baseline but not yet for the other cases. 

c. Computation time 

To get insight into how the assimilation computation time is affected by using the 

node-based approach, we collected CPU time data from those portions of the GSI 

computational process that depend heavily on the radiative transfer model or otherwise 

depend on the number of channels. The timing results (Table 3) cover a batch of 10,748 

IASI FOVs from one ±3-hr analysis time window. Subprogram setuprad runs the 

CRTM-OSS forward model, including radiative transfer for OSS nodes and, for channel-

based assimilation, mapping of radiances and Jacobians from nodes to channels [by (1) 

and (2)]. Subprogram setuprad also runs QC on the observation data. It operates on 

assimilated and monitored channels. Subprogram intrad computes the gradient of the 

radiance observation terms, as part of the cost function minimization. The radiative 

transfer component of the setuprad processing was the same for all of these runs, 

because CRTM-OSS calculated the channel radiances at the same 404 nodes in each case. 

The extra time in setuprad for the channel-based runs included projecting radiances 

and Jacobians from nodes to channels, which depends on the numbers of nodes and 

channels and other factors (Eq. 3 of Moncet et al. 2015) and included performing QC on 

465 or 5,420 channels versus 404 nodes.  
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The intrad time was much higher for the node-based runs than for the channel-

based runs. The vast majority of the intrad time for the node-based runs was used for 

the inversion of the non-diagonal observation error covariance matrix needed for node-

based assimilation. This attribution was confirmed in a test that treated this matrix as 

diagonal, and found the intrad time to be about the same as for the baseline (bottom 

row of Table 3). When the GSI implementation of correlated observation errors is 

complete, the matrix inversion distinction between channel-based and node-based 

approaches will be eliminated. While the time for the Full runs is inherently higher than 

for the node-based runs, the information content from the observations is virtually 

identical. 

The computational burden of some operations of setuprad and intrad scale in 

relation to the counts of channels and nodes, but the timing is affected by numerous 

computational details and additional operations that are included in setuprad, intrad, 

and other components of the GSI system. Prior to operational implementation of node-

based assimilation, a detailed computational profiling could be performed with the 

current GSI as a step toward optimizing the efficiency. 

5. Conclusions 

Our primary conclusions are the following. 

 The GSI (3D-Var version) was successfully modified to assimilate hyperspectral 

sounder data that have been transformed from channels to OSS nodes, while doing 

all GSI processing in node space. 
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 The radiative transfer module was the only computational aspect of the GSI that 

inherently required modification to accommodate node-based assimilation. The 

observation error processing (including matrix inversion) required modification, but 

only as an interim measure until the implementation of GSI capabilities to treat 

observation error correlations is complete. 

 Adaptation of the GSI to treating node-based data requires replacement of channel-

specific tabulated error metrics with node-specific metrics. The methods we 

developed to essentially extrapolate channel-based metrics from the baseline 

channel set to the full channel set and to nodes were adequate to allow some 

forecast benefits of node-based assimilation to be shown. 

 Performing GSI assimilation with less-exclusive channel selection (more channels 

than the baseline) and with node data requires methods to filter out channels or 

nodes that cannot be well handled by the GSI. The method we used, based on 

observation-minus-background difference statistics, was sufficiently effective for 

node-based assimilation to perform well relative to the baseline, but a method that 

can be objectively and consistently applied to small and large sets of channels and to 

nodes would be preferable. 

 We tested two methods for representing the observation error covariances for nodes, 

which differed with respect to their assumptions about how node-projected 

measurement errors are combined with other observation errors. The method we 

called Node1 performed better than Node2 overall, but we do not consider that 

result to be definitive without broader testing, and there may be additional methods 

worthy of consideration. 
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 In areas with low clouds, the node-based approach was advantageous over the 

channel-based approach, with respect to allowing measurements characterizing the 

above-cloud atmosphere to be accepted (passed) by QC tests of cloud 

contamination, owing to the vertically narrower weighting functions for nodes than 

for channels.  

 An experiment with node-based assimilation (Node1) performed significantly better 

than the channel-based baseline in overall summary assessment metrics and for 

most of the stratified metrics of forecast skill (variables, levels, regions) for which 

differences were statistically significant. 

 An experiment that assimilated many more channels than the baseline (5014 versus 

150) had worse forecast skill than the baseline, and we suspect that neglect of 

correlations of observation errors was predominantly responsible for the 

degradation. 

 Node-based assimilation was advantageous over channel-based assimilation with 

respect to computation time for radiative transfer (by a factor of 4). The introduction 

of non-diagonal observation error covariances with the node-based approach caused 

the time for computing the gradient of the satellite observation terms to increase 

greatly, but this aspect of the distinction between the speed of channel and node-

based approaches will be eliminated when the GSI transition to using non-diagonal 

covariances for channel observations is complete. 

Overall, the results of our experiments are encouraging, from the standpoint that the 

node-based approach provided positive impacts on the forecast for some metrics, regions, 

and lead times, despite the fact that there are aspects of the node-based processing that 
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have not yet been optimized. Investigations of some of the performance issues discussed 

above would be promising subjects of follow-on work. In addition, it may be useful to 

perform sensitivity experiments to tease out the degree to which positive impacts of 

node-based assimilation are due to effective sampling of information in various parts of 

the spectrum (e.g. CO2, H2O, window regions) or improved QC yield above clouds and 

the surface.   

Any follow-on studies should test performance over longer periods and should invest 

in data processing and verification aspects that avoid shortcomings of the proof-of-

concept study presented here. In particular, self-analysis verification, as was used here, is 

well short of being ideal for data impact experiments, where the analysis error and short-

term forecast error are crucial. Verification versus an independent analysis or versus 

high-quality observations, such as radiosonde or microwave radiances, would be 

desirable. In addition, data processing revisions should eliminate the dependence of node-

based assimilation on adaptations from the partly subjective configuration data of the 

150-channel baseline. Aspects of that dependence include static filtering that eliminates 

problematic channels or nodes, data representing the prior estimate of observation error 

in each channel or node, and thresholds applied in dynamic filtering of individual 

observations. To “level the playing field” that currently tilts in favor of the 150-channel 

baseline, fully objective methods should be developed for these aspects of processing and 

applied equally to node-based assimilation and a new channel-based baseline. Those new 

developments might include departing from the baseline GSI method of estimating 

observation error covariances to implement a diagnostic approach that includes off-

diagonal terms. 
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APPENDIX A: Mathematical equivalence of assimilation with channels and OSS 1 

nodes 2 

The familiar variational assimilation problem consists of finding the minimum of the 3 

cost function 4 

𝐽 = 𝐱𝑇𝐁−1𝐱 + [𝐲 − 𝐲obs]
𝑇
𝐑−1[𝐲 − 𝐲obs] ( 6 ) 

where x is the atmospheric state vector, yobs is the vector of radiance observations, B is 5 

the background error covariance, R is the observation error covariance, and y is the 6 

vector of radiances generated by a forward model operating on x, which performs 7 

radiative transfer calculations. Considering that radiative transfer calculations are treated 8 

as one-dimensional problems, we can view this as a 1D-Var problem, where x represents 9 

conditions along a single profile, for the purposes of considering the channel-node 10 

equivalence. This is a nonlinear problem, but the nonlinear solution is equivalent in the 11 

two modes (channel-based and node-based) if the linear solution is equivalent, so we can 12 

focus on a linear solution that represents one step in an iterative nonlinear solution.  13 

For illustration, we work with a form of the iterative non-linear solution shown in 14 

Rodgers (2000), written in node space:  15 

𝐱̂𝑖+1 = (𝐊̃𝑖
𝑇𝐑̃−1𝐊̃𝑖 + 𝐁−1)

−1
(𝐊̃𝑖

𝑇𝐑̃−1𝐲̃obs + 𝐁−1𝐱𝑖), ( 7 ) 

where i indicates the iteration, the tilde denotes node space and K is a Jacobian matrix. 16 

Conversion to channel space uses the relationships (2) and (5) to show the equivalence 17 

𝐊̃𝑇𝐑̃−1𝐊̃ = 𝐊𝑇𝐑−1𝐊. Conversion of the term 𝐊̃𝑇𝐑̃−1𝐲̃obs can be done by substituting (5) 18 

into (4) and substituting that result into (3), yielding 𝐲̃obs = 𝐑̃𝐖𝑇𝐑−1𝐲obs, so 19 
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𝐊̃𝑇𝐑̃−1𝐲̃obs = 𝐊̃𝑇𝐖𝑇𝐑−1𝐲obs. Then applying (2) to replace 𝐊̃𝑇𝐖𝑇 with 𝐊𝑇 yields 20 

𝐊̃𝑇𝐑̃−1𝐲̃obs = 𝐊𝑇𝐑−1𝐲obs. Using these equivalences by substitution in (7) produces the 21 

same linear solution in channel space:  22 

𝐱̂𝑖+1 = (𝐊𝑖
𝑇𝐑−1𝐊𝑖 + 𝐁−1)−1(𝐊𝑖

𝑇𝐑−1𝐲obs + 𝐁−1𝐱𝑖). ( 8 ) 

This derivation shows that the same result 𝐱̂ is obtained regardless of what is used 23 

for W and for R, as long as 1) the observation error covariances in channel space and 24 

node space are related by (5) and 2) W and R are used consistently throughout the 25 

computations. Specifically, the W used in (1) and (2) in the forward model for the 26 

channel-space inversion (8) must be the same as is used when applying (4) and (5) to 27 

prepare terms for the node-space inversion (7), and the same R must be used in (4) and 28 

(5) for the node-space solution and in (8) for the channel-space solution. However, in the 29 

experiments described in the main text, there are steps in the GSI that introduce 30 

inconsistencies between the R used in (4) and (5) and the R and 𝐑̃ used in the respective 31 

channel-space and node-space inversions. 32 

This demonstration of the equivalence between the channel-based and node-based 33 

solutions depends on (5) and, therefore, on the invertibility of  𝐖𝑇𝐑−1𝐖, which holds if 34 

𝐖𝑇𝐖 is invertible. The only condition under which 𝐖𝑇𝐖 would not be invertible is 35 

when two or more columns of W are linearly dependent, meaning that monochromatic 36 

radiances at some of the selected nodes could be expressed as linear combinations of 37 

radiances at other nodes. By design, the node selection process eliminates this possibility, 38 

as explained in detail by Moncet et al. (2008; 2015). In other words, if a matrix W has 39 

been produced by the OSS training process, then 𝐖𝑇𝐖 is invertible. 40 
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 41 

APPENDIX B: Filtering based on observation-minus-background statistics 42 

We generated observation-minus-background (O−B) difference statistics for the full 43 

IASI channel set (bands 1 and 2) and for OSS nodes as a by-product of a two-month 44 

experiment that assimilated only the baseline 150 channels (Sec. 2). The O−B difference 45 

statistics are affected by the GSI adaptive bias correction (Zhu et al. 2014). To verify the 46 

bias correction was operating properly with CRTM-OSS, on the full channel set and on 47 

OSS nodes, we compared these O−B difference statistics to the results from CRTM-48 

ODPS for the 465 channels in IASI bands 1 and 2, with and without bias correction. The 49 

bias correction was as effective with CRTM-OSS as with CRTM-ODPS in terms of O−B 50 

bias and rms (not shown)3. The O−B statistics were similar for channels and OSS nodes, 51 

except for exceptionally high rms differences for some nodes (Fig. B1). We would expect 52 

higher differences for nodes with relatively low OSS weights, for which the measurement 53 

noise gets magnified in the transformation from channels to weights (5), and analysis 54 

showed that the highest O−B rms generally occurred with nodes that had relatively high 55 

measurement noise. Another contributor to O−B rms differences for nodes would be 56 

background errors with vertical length scales resolvable by nodes but not by channels 57 

(e.g., Fig. 3). 58 

To apply the O−B results to static filtering of the full channel set, we identified 59 

channels with exceptionally high O−B rms differences, relative to the overall spectral 60 

                                                

3 The bias correction algorithm has the incidental effect of reducing O−B rms as well as bias. 
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trends. Specifically, we applied a Lee filter to the O−B rms differences to represent the 61 

spectral trends. A Lee filter is a smoother of the form 62 

ℎ𝑖 = 𝑘 + 𝑠(𝑔𝑖 − 𝑘), ( 9 ) 

where gi is the ith element of the input vector, hi is the corresponding output, 𝑘 is the 63 

mean of the window that centers on point i, and s is the weight function 64 

𝑠 =
𝜎𝑘
2

𝜎𝑘
2+𝜎2

, ( 10 ) 

where 𝜎2 is the variance of the spectrum and 𝜎𝑘
2 is the variance of the window. We chose 65 

a window with 20 points on either side of point i, by subjective interpretation of plots 66 

(e.g., Fig. B2a). We chose to exclude channels with O−B rms exceeding the Lee filter 67 

output by greater than a threshold 0.15 K, except the threshold was increased to 0.3 K in 68 

the range 1350–1750 cm−1 because the filter output in this range was affected by a 69 

scattering of points with relatively low O−B rms and thus a 0.15-K threshold resulted in 70 

excluding many channels. This process resulted in 5014 channels being selected and 406 71 

channels excluded out of the total 5420 channels. Among the excluded channels are some 72 

around the 667-cm−1 Q branch of CO2. For application to OSS nodes, we started by 73 

interpolating the channel-based Lee filter output from channel centers to nodes, 74 

considering that the nodes are too sparse and irregularly spaced for application of such a 75 

filter. With nodes, a threshold of 0.5 K difference from the Lee filter output resulted in 76 

139 of the total 404 nodes being identified as excluded and 265 being selected for 77 

assimilation (Fig. B2). 78 

  79 
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APPENDIX C: Extrapolation of PEOE to channels and nodes 80 

To run experiments with the full IASI channel set and with OSS nodes, we needed a 81 

method to obtain PEOE values for nodes and for channels not normally treated by GSI. 82 

To be as consistent as possible with the baseline GSI, we essentially extrapolated the 83 

baseline PEOE data to the full channel set and to the OSS nodes4.  84 

The approach we chose took account of the fact that, in spectral plots of PEOE data 85 

provided in the baseline GSI configuration for IASI, it was apparent that there was some 86 

relation to the atmospheric absorption spectrum. The absorption spectrum dictates how 87 

brightness temperatures in a channel at any particular satellite FOV reflect the vertical 88 

profile and surface (e.g., temperature, water vapor) at the FOV. With this in mind, we 89 

created a dataset composed of simulated brightness temperatures for all 6658 globally 90 

distributed IASI FOVs from 17 June 2015, including all 465 channels that are either 91 

assimilated or monitored by the baseline GSI. We used brightness temperatures simulated 92 

during the Baseline experiment (i.e., background atmosphere data processed through the 93 

RTM) rather than using real measurements in this process, as a means to exclude 94 

measurement error from this PEOE extrapolation process. We computed a matrix 95 

                                                

4 Considering that the PEOE values include radiative transfer (RT) modeling error, this approach 

implicitly assumes that the RT errors are the same for OSS as for the ODPS method that is the standard 

approach with CRTM. Experiments have shown that these RT errors are lower for OSS than for ODPS. 

However, the PEOE values are empirically derived (tuned), so there is no quantification of the portion of 

the PEOE representing RT error, and thus we have no firm basis to adjust the PEOE for such model 

differences. 
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representing the covariance of the FOVs (a 6658×6658 matrix) based on the 465 spectral 96 

samples, and then computed the eigenvectors of that covariance matrix. Because the 97 

FOVs represent a single day, the eigenvectors make a coherent spatial pattern when 98 

plotted as maps. For example (Fig. C1), the eigenvector 1 structure is dominated by 99 

equator-pole contrast and the eigenvector 2 structure highlights the subtropics and the 100 

south pole in contrast to other latitudes. We used this eigenvector matrix to transform 101 

each of the 465 channel “maps” into principal components (PCs) and trained a linear 102 

regression to “predict” the PEOE from varying subsets of the PCs. In this regression, 103 

PEOEs were represented as standard deviations of brightness temperatures, as in the 104 

original tabulation of the 465-channel PEOE data. We assessed the performance of this 105 

regression approach with varying numbers of PCs as “predictors” (Fig. C2) and 106 

concluded that 13 eigenvectors captured virtually all the predictive skill with no 107 

indication of overfitting in the jack-knife results (i.e., no evidence of error rising with 108 

increasing numbers of PCs). 109 

To obtain the PEOE for the full channel set, we computed each channel’s brightness 110 

temperature for each of the 6658 FOVs, transformed to PCs, and applied the regression 111 

coefficients (Fig. C3a). As compared with the values provided by the baseline GSI 112 

configuration data, the data produced by the regression are quite consistent throughout 113 

the spectrum. As a point of reference, we computed the difference between the PEOE and 114 

the O−B rms for each of the 465 channels for which tabulated PEOE data were available. 115 

We found that this difference was higher than 0.1 K for 99% of the FOVs. For 116 

application to the full channel set and to OSS nodes, we increased the PEOE, as needed, 117 
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to ensure that it exceeded the O−B rms for the respective channel by at least 0.1 K5. The 118 

impact of adjusting PEOE values by this criterion was modest (Fig. C3b), and most of the 119 

affected channels were in the 1400–1800 cm−1 portion of the water vapor ν2 band. 120 

When the same approach was applied to OSS node brightness temperatures, the 121 

results were generally consistent with the data for channels, but there were instances of 122 

exceptionally high (~650 cm−1) and low (~1300 cm−1) PEOE values. The uneven results 123 

are unsurprising when considering that the OSS node brightness temperatures are 124 

monochromatic, and hence there are node value combinations (across the FOVs) that are 125 

outside the range of anything that was included in the regression training data. We 126 

mitigated this behavior for nodes whose nearest neighboring channel was among the 465 127 

assimilated+monitored channels for which PEOE was provided by replacing the OSS 128 

node regression results with data from that nearest channel (Fig. C4a). The adjustment 129 

derived from O−B data had a more prominent effect on the PEOE for nodes (Fig. C4b) 130 

than for channels. Those more prominent effects were, however, mostly limited to nodes 131 

that were not among the 265 selected for assimilation. 132 

  133 

                                                

5 It would be reasonable to expect PEOE to be lower than the O−B rms, since forecast error 

contributes to the O−B rms and they otherwise represent the same error sources. Nevertheless, we chose to 

retain this relationship between the specified PEOEs and the respective channel’s computed O−B rms as we 

extrapolated PEOEs. 
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Table 1.  Summary of assimilation experiments 248 

Experiment Assimilated Obs error method 

Baseline: 150 channels  

Full: 5014 channels  

Node1: 265 nodes method 1 

Node2: 265 nodes method 2 

  249 
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Table 2.  The dimensions over which SAMs were computed, and the specific coordinates 250 

at which they were computed. 251 

Dimension Coordinates 

forecast time 24, 48, 72, 96, 120, 144, 168 h 

level 250, 500, 700, 850, 1000 hPa 

domain 

northern hemisphere extratropics (NHX), 

southern hemisphere extratropics (SHX), 

tropics 

variable 
geopotential height (Z), temperature (T), vector wind (V), relative, 

humidity (RH) 

statistic anomaly correlation (AC), root mean square error (RMSE) 

  252 
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Table 3.  Computation time per IASI field of view for subprocesses setuprad (3 253 

iterations, as in baseline GSI execution) and intrad (2 iterations), in absolute terms and 254 

relative to the 150-channel baseline assimilation, with counts of channels or nodes 255 

processed through radiative transfer, mapping Jacobians from nodes to channels, quality 256 

control, and assimilation. 257 

 counts  setuprad  intrad 
 

RT map QC assim 
 time 

(s) relative 

 time 

(s) relative 

Baseline: 150 

channels 
404 465 465 150 

 
2.01 1.00 

 
0.03 1.00 

Full: 5014 

channels 
404 5420 5420 5014 

 
11.05 5.49 

 
0.55 18.28 

Node1: 265 

nodes 
404 0 404 265 

 
0.49 0.25 

 
15.30 509.04 

Node2: 265 

nodes 
404 0 404 265 

 
0.50 0.25 

 
15.34 510.32 

Test: 265 

nodes, 

uncorrelated 

404 0 404 265 

 

0.50 0.25 

 

0.03 0.96 

  258 
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 259 
Fig. 1. Measurement error correlation after projection of all 5420 channels from IASI 260 

bands 1 and 2 onto the 404 IASI OSS nodes.   261 
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 262 
Fig. 2. The numbers of measurements passing all of the QC tests for the 465 baseline 263 

assimilated+monitored channels (top), the full channel set (middle), and OSS nodes 264 

(bottom), based on data from 11 July 2015 00 UTC – 12 July 2015 18 UTC. Black and 265 

gray markers indicate selected and excluded channels or nodes, respectively, according to 266 

the static filtering.  267 
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 268 
Fig. 3. Temperature Jacobians for an OSS node at 740.54 cm−1 (red) and for three nearby 269 

channels (black, blue, and cyan) for which the Jacobians peak at about the same pressure 270 

level. The 11 curves are for observations within the subtropical South Pacific region 271 

shown in Fig. 4, on July 28, 2015.   272 
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 273 
Fig. 4. July 28, 2015 image composite of Advanced Very-High-Resolution Radiometer 274 

(AVHRR) channels centered near 3.7 μm (red), 10.8 μm (green), and 12.0 μm (blue), 275 

whereby high, thin clouds appear cyan, low clouds appear reddish brown, and thick 276 

clouds appear white. The clouds appearing reddish brown here had top pressures roughly 277 

in the range 820–880 mb, according to cloud property retrievals (Minnis et al. 2016). 278 

IASI observation sites where the QC process passed the node at 740.54 cm−1 and also 279 

passed the associated channels (see Fig. 3) are marked green, and sites where the node 280 

passed but the channels did not pass are marked red. 281 

 282 

  283 



49 

 

 284 
Fig. 5. Anomaly correlations (ACs) for 500-mb geopotential height for the northern 285 

hemisphere extratropics (NHX) as a function of forecast time averaged over all 286 

verification times, in terms of a) AC for each of the four experiments (color coded), b) 287 

each experiment relative to Baseline (color bars), and c) each experiment relative to 288 

Baseline as a percentage. The grey curves in frame a represent all Baseline forecasts 289 

individually. Error bars are plotted at the 95% confidence interval in frames b and c.   290 
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 291 
Fig. 6. Impact relative to Baseline of selected error metrics as a percentage of the 292 

Baseline error. The Student-t quantile for each δ impact is printed in parentheses and 293 

color coded, with the shades of blue indicating improvement and the shades of red 294 

indicating degradation.In the axis label, symbols Z, V, and RH represent geopotential 295 

height, wind speed, and relative humidity, respectively, and the following numbers (250, 296 

850, 500) indicate the pressure level (hPa). NHX and SHX represent extra-tropical 297 

northern and southern hemispheres, respectively. 298 
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 300 
Fig. 7. Summary assessment metrics (SAMs) a) for each experiment globally and b) for 301 

each experiment as a function of forecast time (h). Here, a 95% uncertainty band is 302 

shaded surrounding the SAM=0.5 line, under the null hypothesis that there is no 303 

difference between centers for this metric. The estimated uncertainty at the 95% level is 304 

indicated by small error bars at the ends of the color bars, which are anchored at the 305 

expected value (0.5).  306 

  307 

a 

S
A

M
 

Forecast time (h) Experiment 

b 



52 

 

  308 
Fig. 8. Variation of SAM by experiment and by a) pressure level, b) geographic domain, 309 

c) variable, and d) statistic. Colors and markers are as in Fig. 7, and the dimension 310 

abbreviations are as in Table 2.   311 
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 312 
Fig. B1. O−B bias and rms for the full channel set (bands 1 and 2) and for OSS nodes, 313 

based on data from 11 July 2015 00 UTC – 12 July 2015 18 UTC.  314 

a 

b 

c 

d 
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 315 
Fig. B2. O−B rms for a) channels as in Fig. B1c and b) nodes as in Fig. B1d. In both 316 

frames, the cyan curve marks the result of the Lee filter (as applied to data from 317 

channels) and the red and black indicate selected and excluded channels or nodes, 318 

respectively, according to the difference from the Lee filter result. The filter window size 319 

covered 20 points to each side of the smoothed point. For clarity, the channel Tb RMSE 320 

is plotted with smaller symbols.   321 

rms for nodes 
b 

a 
rms for channels 
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 322 

Fig. C1. Eigenvectors 1 (top) and 2 (bottom) of the FOV-to-FOV covariance matrix 323 

derived from 465 channel set of brightness temperature samples. The amplitude of each 324 

element of the eigenvector is plotted at the location of the corresponding FOV. 325 

Amplitudes are normalized so the sum of squares is 1.  326 

  327 
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 328 
Fig. C2. The regression fit rms error, comparing the predicted PEOE values against the 329 

actual baseline GSI values, for the 465 channels in the training set, plotted as a function 330 

of the number of PCs used as predictors. The blue curves represent the performance on 331 

the dependent (training) dataset and the magenta curves show the result of applying the 332 

standard jack-knife method to estimate the performance on independent data. Results are 333 

shown separately for the 150 assimilated channels (solid) and the 315 monitored channels 334 

(dashed). The vertical dotted line indicates the selected number of PCs (13). 335 
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 337 
Fig. C3. PEOE for IASI channels before (top) and after (bottom) adjusting relative to 338 

O−B rms. In the top frame (a), channels that were among the 465 channels designated for 339 

assimilation or monitoring in the baseline GSI are marked cyan and the other channels 340 

are marked red. For the 465-channel subset, the GSI baseline values are marked black. In 341 

the lower frame (b), the PEOE results from the 5014 channels selected for assimilation by 342 

our filtering approach (Sec. 3d) are marked red and the rest are black.  343 

  344 
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 345 
Fig. C4. PEOE for IASI OSS nodes before (a) and after (b) adjusting relative to O−B 346 

rms. The data in the upper frame were derived from a combination of values from 347 

neighboring channels and results from regression applied to node brightness 348 

temperatures, as explained in the text. For reference, PEOE data for the 465 channels 349 

designated for assimilation or monitoring in the baseline GSI are shown the same as in 350 

Fig. C3. In the lower frame, the PEOE results from the 265 nodes selected for 351 

assimilation by our filtering approach (Sec. 3d) are marked red and the rest are black. 352 

a PEOE from regression and 
neighboring channels 

b PEOE after adjusting 


